【題目】已知拋物線C:y2=4x與點M(0,2),過C的焦點,且斜率為k的直線與C交于A,B兩點,若 =0,則k= .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C,直線(為參數(shù))
(1)寫出曲線C的參數(shù)方程和直線l的普通方程;
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x3﹣3x+2+m(m>0),在區(qū)間[0,2]上存在三個不同的實數(shù)a,b,c,使得以f(a),f(b),f(c)為邊長的三角形是直角三角形,則m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 | 105 |
已知在全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”?
參考公式:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“石頭、剪刀、布”,又稱“猜丁殼”,是一種流行多年的猜拳游戲,起源于中國,然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風(fēng)靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在語音剛落時同時出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過“石頭”.若所出的拳相同,則為和局.小軍和大明兩位同學(xué)進(jìn)行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小軍和大明比賽至第四局小軍勝出的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x3﹣3x+2+m(m>0),在區(qū)間[0,2]上存在三個不同的實數(shù)a,b,c,使得以f(a),f(b),f(c)為邊長的三角形是直角三角形,則m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函數(shù)y=f(x)存在與直線2x﹣y=0垂直的切線,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)g(x)=f(x)+ ,若g(x)有極大值點x1 , 求證: >a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在R上的奇函數(shù),對x,y∈R都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)<0,f(-1)=2.
(1)求證:f(x)為奇函數(shù);
(2)求證:f(x)是R上的減函數(shù);
(3)求f(x)在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察下列三角形數(shù)表:
假設(shè)第n行的第二個數(shù)為 ,
(1)歸納出an+1與an的關(guān)系式,并求出an的通項公式;
(2)設(shè)anbn=1(n≥2),求證:b2+b3+…+bn<2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com