【題目】若定義在上的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù)使得對任意的實數(shù)都成立,則稱是一個特征函數(shù)則下列結(jié)論中正確的個數(shù)為( ).

是常數(shù)函數(shù)中唯一的特征函數(shù)”;

不是特征函數(shù)”;

特征函數(shù)至少有一個零點;

是一個特征函數(shù)”;.

A. B. C. D.

【答案】C

【解析】分析:利用新定義特征函數(shù),逐個判斷即可得到答案.

詳解:對于①設(shè)是一個“特征函數(shù)”,則,當(dāng)時,可以取實數(shù)集,因此不是唯一一個常數(shù)“特征函數(shù)”,故①錯誤;

對于②,∵,即,

∴當(dāng)時,;時,有唯一解,

∴不存在常數(shù)使得對任意實數(shù)都成立,

不是“特征函數(shù)”,故②正確;

對于③,令,所以

,顯然有實數(shù)根;若

又∵的函數(shù)圖象是連續(xù)不斷的,∴上必有實數(shù)根,

因此任意的“特征函數(shù)”必有根,即任意“特征函數(shù)”至少有一個零點,故③正確;

對于④,假設(shè)是一個“特征函數(shù)”,則對任意實數(shù)成立,則有,而此式有解,所以是“特征函數(shù)”,故④正確.

綜上所述,結(jié)論正確的是②③④,共個.

故選

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,是邊長為的等邊三角形,,分別是的中點

)求證:平面;

)求證:平面平面;

)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,DB平分為的中點,

(1)證明: ;

(2)證明:

(3)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠在政府的幫扶下,準(zhǔn)備轉(zhuǎn)型生產(chǎn)一種特殊機器,生產(chǎn)需要投入固定成本萬元,生產(chǎn)與銷售均已百臺計數(shù),且每生產(chǎn)臺,還需增加可變成本萬元,若市場對該產(chǎn)品的年需求量為臺,每生產(chǎn)百臺的實際銷售收入近似滿足函數(shù)

)試寫出第一年的銷售利潤(萬元)關(guān)于年產(chǎn)量(單位:百臺,)的函數(shù)關(guān)系式:(說明:銷售利潤=實際銷售收入-成本)

)因技術(shù)等原因,第一年的年生產(chǎn)量不能超過臺,若第一年的年支出費用(萬元)與年產(chǎn)量(百臺)的關(guān)系滿足,問年產(chǎn)量為多少百臺時,工廠所得純利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

就診人數(shù)(個)

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗.

(1)求選取的組數(shù)據(jù)恰好是相鄰兩月的概率;

(2)若選取的是1月與月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

參考數(shù)據(jù),

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:集合,其中

,稱的第個坐標(biāo)分量.若,且滿足如下兩條性質(zhì):

中元素個數(shù)不少于個.

,,,存在,使得,,的第個坐標(biāo)分量都是.則稱的一個好子集.

)若的一個好子集,且,寫出,

)若的一個好子集,求證:中元素個數(shù)不超過

)若的一個好子集且中恰好有個元素,求證:一定存在唯一一個,使得中所有元素的第個坐標(biāo)分量都是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場.已知AD//BC, 百米, 百米,廣場入口P在AB上,且,根據(jù)規(guī)劃,過點P鋪設(shè)兩條相互垂直的筆直小路PM,PN(小路的寬度不計),點M,N分別在邊AD,BC上(包含端點),區(qū)域擬建為跳舞健身廣場, 區(qū)域擬建為兒童樂園,其它區(qū)域鋪設(shè)綠化草坪,設(shè).

(1)求綠化草坪面積的最大值;

(2)現(xiàn)擬將兩條小路PNM,PN進(jìn)行不同風(fēng)格的美化,PM小路的美化費用為每百米1萬元,PN小路的美化費用為每百米2萬元,試確定M,N的位置,使得小路PM,PN的美化總費用最低,并求出最小費用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA=PB=AB=2,BC=3,ABC=90°,平面PAB平面ABC,D,E分別為AB,AC中點.

(1)求證:DE平面PBC;

(2)求證:AB⊥PE;

(3)求三棱錐P﹣BEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)購已經(jīng)成為一種時尚,商家為了鼓勵消費,購買時在店鋪領(lǐng)取優(yōu)惠券,買后給予好評返還現(xiàn)金等促銷手段.經(jīng)統(tǒng)計,近五年某店鋪用于促銷的費用(萬元)與當(dāng)年度該店鋪的銷售收人(萬元)的數(shù)據(jù)如下表:

年份

2013年

2014年

2015年

2016年

2017年

促銷費用

銷售收入

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出/span>關(guān)于的線性回歸方;

(2)2018年度該店鋪預(yù)測銷售收人至少達(dá)到萬元,則該店鋪至少準(zhǔn)備投入多少萬元的促銷費?

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案