【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場.已知AD//BC, 百米, 百米,廣場入口P在AB上,且,根據(jù)規(guī)劃,過點P鋪設兩條相互垂直的筆直小路PM,PN(小路的寬度不計),點M,N分別在邊AD,BC上(包含端點),區(qū)域擬建為跳舞健身廣場, 區(qū)域擬建為兒童樂園,其它區(qū)域鋪設綠化草坪,設.

(1)求綠化草坪面積的最大值;

(2)現(xiàn)擬將兩條小路PNM,PN進行不同風格的美化,PM小路的美化費用為每百米1萬元,PN小路的美化費用為每百米2萬元,試確定M,N的位置,使得小路PM,PN的美化總費用最低,并求出最小費用.

【答案】(1) 綠化草坪面積的最大值為平方百米;(2) 時總美化費用最低為4萬元.

【解析】試題分析:(1)先求得

,再利用均值不等式求得正解;(2)先求得 ,

總美化費用為 ,再利用導數(shù)工具求得正解.

試題解析:(1)在中, ,得,

所以

,

中, ,得,

所以

所以綠化草坪面積

又因為

當且當,即。此時

所以綠化草坪面積的最大值為平方百米.

(2)方法一:在中, ,得,

,

中, ,得

所以總美化費用為

列表如下

-

0

-

單調(diào)遞減

單調(diào)遞增

所以當時,即時總美化費用最低為4萬元。

方法二:在中, ,得,

,

中, ,得,

所以總美化費用為

所以

所以上是單調(diào)遞減

所以當, 時,即時總美化費用最低為4萬元。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】的內(nèi)角A,B,C的對邊分別為ab,c,,且B為鈍角,

(1);(2)求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下的資料:

該興趣小組確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選用的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月的數(shù)據(jù),求出關于的線性回歸方程;

(3)若有線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否是理想?

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在上的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù)使得對任意的實數(shù)都成立,則稱是一個特征函數(shù)則下列結(jié)論中正確的個數(shù)為( ).

是常數(shù)函數(shù)中唯一的特征函數(shù)”;

不是特征函數(shù)”;

特征函數(shù)至少有一個零點;

是一個特征函數(shù)”;.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列滿足.

(1)求;

(2)先猜想出的一個通項公式,再用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1時,求的單調(diào)區(qū)間;

2若對,都有成立,求的取值范圍;

3時,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1的方程為3x+4y﹣12=0.

(1)若直線l2與l1平行,且過點(﹣1,3),求直線l2的方程;

(2)若直線l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】;~塘是某地一種獨具地方特色的農(nóng)業(yè)生產(chǎn)形式,某研究單位打算開發(fā)一個;~塘項目,該項目準備購置一塊平方米的矩形地塊,中間挖成三個矩形池塘養(yǎng)魚,挖出的泥土堆在池塘四周形成基圍(陰影部分所示)種植桑樹,池塘周圍的基圍寬均為米,如圖,設池塘所占總面積為平方米.

Ⅰ)試用表示

Ⅱ)當取何值時,才能使得最大?并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實數(shù) 的取值范圍,

(2)當時,關于的方程在[1,4]上恰有兩個不相等的實數(shù)根,

求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案