【題目】如圖,在四棱錐中,底面是矩形,側棱底面,且,過棱的中點,作于點.

1)證明:平面;

2)若面與面所成二面角的大小為,求與面所成角的正弦值.

【答案】1)見解析(2

【解析】

1)連接,則的中點,連接,證明,平面即得證;(2)如圖以為原點,方向分別為軸,軸,軸正半軸建立空間直角坐標系.,根據(jù)面與面所成二面角的大小為求出,再求出與面所成角的正弦值.

1)證明:連接,則的中點,連接,

的中位線,所以

有因為,

所以平面.

2)如圖以為原點,方向分別為軸,軸,軸正半軸建立空間直角坐標系.,則

,,,

,設,則,

,即,解得

是平面的一個法向量,則

,方程的一組解為 ,

顯然是面的一個法向量,依題意有

,得,

結合①式得 .

因為底面,所以與面所成的角,

所以 .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知中, ,點平面,點在平面的同側,且在平面上的射影分別為,.

(Ⅰ)求證:平面平面;

(Ⅱ)若中點,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程是是參數(shù)),以坐標原點為原點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)判斷直線與曲線的位置關系;

(2)過直線上的點作曲線的切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中無理數(shù).

(Ⅰ)若函數(shù)有兩個極值點的取值范圍

(Ⅱ)若函數(shù)的極值點有三個,最小的記為最大的記為,的最大值為,的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,直線lP為直線l上一點,且點P在極軸上方OP為一邊作正三角形逆時針方向,且面積為

Q點的極坐標;

外接圓的極坐標方程,并判斷直線l外接圓的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.

1)證明:當取得最小值時,橢圓的離心率為.

2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質(zhì)量分別在,,,,(單位:克)中,其頻率分布直方圖如圖所示.

1)按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;

2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:

A. 所有蜜柚均以40/千克收購;

B. 低于2250克的蜜柚以60/個收購,高于或等于2250克的以80/個收購.

請你通過計算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若點的極坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案