【題目】已知無窮數(shù)列的前項和為,且滿足,其中、是常數(shù).

1)若,,,求數(shù)列的通項公式;

2)若,,且,求數(shù)列的前項和

3)試探究、、滿足什么條件時,數(shù)列是公比不為的等比數(shù)列.

【答案】1;(2;(3,

【解析】

試題分析:(1)已知的關(guān)系,要求,一般是利用它們之間的關(guān)系 ,把,化為,得出數(shù)列的遞推關(guān)系,從而求得通項公式;(2)與(1)類似,先求出,時,推導(dǎo)出之間的關(guān)系,求出通項公式,再求出前項和;(3)這是一類探究性命題,可假設(shè)結(jié)論成立,然后由這個假設(shè)的結(jié)論來推導(dǎo)出條件,本題設(shè)數(shù)列是公比不為的等比數(shù)列,則,,代入恒成立的等式,得

對于一切正整數(shù)都成立,所以,,得出這個結(jié)論之后,還要反過來,由這個條件證明數(shù)列是公比不為的等比數(shù)列,才能說明這個結(jié)論是正確的.在討論過程中,還要討論的情況,因為時,,當(dāng)然這種情況下,不是等比數(shù)列,另外

試題解析:(1)由,得1

當(dāng)時,,即2

所以; 1

2)由,得,進而, 1

當(dāng)時,

,

因為,所以, 2

進而2

3)若數(shù)列是公比為的等比數(shù)列,

當(dāng)時,,

,得恒成立.

所以,與數(shù)列是等比數(shù)列矛盾; 1

當(dāng)時,, 1

恒成立,

對于一切正整數(shù)都成立

所以,,3

事實上,當(dāng),時,

時,,得

所以數(shù)列是以為首項,以為公比的等比數(shù)列 2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了豐富學(xué)生的課余生活,以班級為單位組織學(xué)生開展古詩詞背誦比賽,隨機抽取一首,背誦正確加10分,背誦錯誤減10分,且背誦結(jié)果只有“正確”和“錯誤”兩種.其中某班級學(xué)生背誦正確的概率,記該班級完成首背誦后的總得分為.

(1)求的概率;

(2)記,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以坐標(biāo)原點為極點,以軸正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

(1)請分別寫出直線與曲線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點,設(shè),且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),若對任意的,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性,并用定義證明;

3)當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究家用轎車在高速公路上的速情況,交通部門對名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在名男性駕駛員中,平均車速超過的有人,不超過的有人.在名女性駕駛員中,平均車速超過的有人,不超過的有.

1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為平均車速超過與性別有關(guān),(結(jié)果保留小數(shù)點后三位)

平均車速超過人數(shù)

平均車速不超過人數(shù)

合計

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計

2)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取輛,若每次抽取的結(jié)果是相互獨立的,問這輛車中平均有多少輛車中駕駛員為男性且車速超過?

附:(其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體挖去部分后的三視圖如圖所示,若其正視圖和側(cè)視圖都是由三個邊長為2的正三角形組成,則該幾何體的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進行理財投資,有兩種方式,甲為投資債券等穩(wěn)健型產(chǎn)品,乙為投資股票等風(fēng)險型產(chǎn)品,設(shè)投資甲、乙兩種產(chǎn)品的年收益分別為、萬元,根據(jù)長期收益率市場預(yù)測,它們與投入資金萬元的關(guān)系分別為,(其中,都為常數(shù)),函數(shù),對應(yīng)的曲線,如圖所示

(1)求函數(shù)、的解析式;

(2)若該家庭現(xiàn)有萬元資金,全部用于理財投資,問:如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=(x-2)ex+a(x-1)2,討論f (x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案