【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1) (2) 減函數(shù),證明見解析;(3) .
【解析】
(1)利用奇函數(shù)的性質(zhì)令,求解即可.
(2)利用函數(shù)的單調(diào)性的定義證明即可.
(3)利用函數(shù)是奇函數(shù)以及函數(shù)的單調(diào)性轉(zhuǎn)化不等式為代數(shù)形式的不等式,求解即可.
(1)∵在定義域上是奇函數(shù),
所以,即,∴,
經(jīng)檢驗(yàn),當(dāng)時(shí),原函數(shù)是奇函數(shù).
(2)在上是減函數(shù),證明如下:
由(1)知,
任取,設(shè),
則,
∵函數(shù)在上是增函數(shù),且,
∴,又,
∴,即,
∴函數(shù)在上是減函數(shù).
(3)因是奇函數(shù),從而不等式等價(jià)于,
由(2)知在上是減函數(shù),由上式推得,
即對(duì)任意,有恒成立,
由,
令,,則可設(shè),,
∴,
∴,即的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃),對(duì)某種雞的時(shí)段產(chǎn)蛋量(單位: )和時(shí)段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.
17.40 | 82.30 | 3.6 | 140 | 9.7 | 2935.1 | 35.0 |
其中.
(1)根據(jù)散點(diǎn)圖判斷, 與哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)
(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知時(shí)段投入成本與的關(guān)系為,當(dāng)時(shí)段控制溫度為28℃時(shí),雞的時(shí)段產(chǎn)蛋量及時(shí)段投入成本的預(yù)報(bào)值分別是多少?
附:①對(duì)于一組具有有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為
②
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè),試討論單調(diào)性;
(2)設(shè),當(dāng)時(shí),任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(3)若,正實(shí)數(shù), 滿足,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com