【題目】已知兩點(diǎn),動(dòng)點(diǎn)滿足,記的軌跡為曲線,直線)交曲線、兩點(diǎn),點(diǎn)在第一象限,軸,垂足為,連結(jié)并延長交曲線于點(diǎn).

1)求曲線的方程,并說明曲線是什么曲線;

2)若,求△的面積;

3)證明:△為直角三角形.

【答案】1,軌跡是以、為焦點(diǎn)的橢圓;(2;(3)證明見解析.

【解析】

1,根據(jù)橢圓定義,即可求出方程;

2)設(shè),可得,求出方程,與橢圓方程聯(lián)立求出點(diǎn)坐標(biāo),再將與橢圓方程聯(lián)立,求出坐標(biāo),即可求解;

2)根據(jù)(2)中點(diǎn)坐標(biāo)求出斜率,即可證明結(jié)論.

1,

點(diǎn)軌跡就是以為焦點(diǎn)的橢圓,

其方程為;

2)設(shè),則,

直線方程為,

聯(lián)立消去得,

,①

設(shè)為方程①的解,

,

,

聯(lián)立,解得

,

3)由(2)得,

,

,即△為直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,分別為橢圓的左、右焦點(diǎn).設(shè)不經(jīng)過焦點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn),焦點(diǎn)到直線的距離為.若直線、、的斜率依次成等差數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系, 經(jīng)過原點(diǎn)的直線分成左、右兩部分,記左、右兩部分的面積分別為 ,取得最小值時(shí),直線的斜率(

A.等于1B.等于C.等于D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),兩個(gè)點(diǎn)列 滿足:① ;②

1)求點(diǎn)的坐標(biāo);

(2)求向量的坐標(biāo);

3)對(duì)于正整數(shù)k,用表示無窮數(shù)列 中從第k+1項(xiàng)開始的各項(xiàng)之和,用表示無窮數(shù)列 中從第k項(xiàng)開始的各項(xiàng)之和,即, 若存在正整數(shù)kp,使得,求k,p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P和非零實(shí)數(shù),若兩條不同的直線 均過點(diǎn)P,且斜率之積為,則稱直線是一組“共軛線對(duì)”,如直 是一組“共軛線對(duì)”,其中O是坐標(biāo)原點(diǎn).

(1)已知是一組“共軛線對(duì)”,求的夾角的最小值;

(2)已知點(diǎn)A(0,1)、點(diǎn)和點(diǎn)C(1,0)分別是三條直線PQ,QR,RP上的點(diǎn)(A,B,CP,Q,R均不重合),且直線PR,PQ是“ 共軛線對(duì)”,直線QP,QR是“共軛線對(duì)”,直線RP,RQ是“共軛線對(duì)”,求點(diǎn)P的坐標(biāo);

(3)已知點(diǎn) ,直線是“共軛線對(duì)”,當(dāng)的斜率變化時(shí),求原點(diǎn)O到直線的距離之積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解兒子身高與其父親身高的關(guān)系,隨機(jī)調(diào)查了5對(duì)父子的身高,統(tǒng)計(jì)數(shù)據(jù)如下表所示.

號(hào)

A

B

C

D

E

父親身高

174

176

176

176

178

兒子身高

175

175

176

177

177

1)從這五對(duì)父子任意選取兩對(duì),用編號(hào)表示出所有可能取得的結(jié)果,并求隨機(jī)事件兩對(duì)父子中兒子的身高都不低于父親的身高發(fā)生的概率;

2)由表中數(shù)據(jù),利用最小二乘法關(guān)于的回歸直線的方程.

參考公式:,;回歸直線:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy內(nèi),點(diǎn),動(dòng)點(diǎn)Q關(guān)于原點(diǎn)O對(duì)稱,,.

(1)以原點(diǎn)O和點(diǎn)A為頂點(diǎn)作等腰直角三角形ABO,使,求向量坐標(biāo);

(2)若P、MA三點(diǎn)共線,求的最小值;

(3)若,且,,求直線AQ的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個(gè)點(diǎn)A、B、CA1、B1、C1上各裝一個(gè)燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個(gè)的安裝方法共有 種(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊(cè)答案