【題目】在三棱錐A﹣BCD中AB=AC=1,DB=DC=2,AD=BC= ,則三棱錐A﹣BCD的外接球的表面積為(
A.π
B.
C.4π
D.7π

【答案】D
【解析】解:∵AB=AC=1,AD=BC= ,BD=CD=2,

∴AB⊥AD,AC⊥AD,

∴AD⊥平面ABC,

在△ABC中,由余弦定理得cos∠BAC= =﹣

∴∠ABC=120°,

以AC為x軸,以AD為z軸建立如圖所示的坐標(biāo)系:

則A(0,0,0),B(﹣ , ,0),C(1,0,0),D(0,0, ),

設(shè)棱錐A﹣BCD的外接球球心為M(x,y,z),

則x2+y2+z2=(x+ 2+(y﹣ 2+z2=(x﹣1)2+y2+z2=x2+y2+(z﹣ 2,

解得x= ,y= ,z= ,

∴外接球的半徑為r= =

∴外接球的表面積S=4πr2=7π.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3x的定義域為R,滿足f(a+2)=18,函數(shù)g(x)=λ3ax﹣4x的定義域為[0,1].
(1)求實數(shù)a的值;
(2)若函數(shù)g(x)為定義域上單調(diào)減函數(shù),求實數(shù)λ的取值范圍;
(3)λ為何值時,函數(shù)g(x)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今信息時代,眾多高中生也配上了手機.某校為研究經(jīng)常使用手機是否對學(xué)習(xí)成績有影響,隨機抽取高三年級50名理科生的一次數(shù)學(xué)周練成績,并制成下面的2×2列聯(lián)表:

及格

不及格

合計

很少使用手機

20

6

26

經(jīng)常使用手機

10

14

24

合計

30

20

50


(1)判斷是否有97.5%的把握認為經(jīng)常使用手機對學(xué)習(xí)成績有影響?
(2)從這50人中,選取一名很少使用手機的同學(xué)記為甲和一名經(jīng)常使用手機的同學(xué)記為乙,解一道數(shù)學(xué)題,甲、乙獨立解出此題的概率分別為P1 , P2 , 且P2=0.5,若|P1﹣P2|≥0.4,則此二人適合結(jié)為學(xué)習(xí)上互幫互助的“學(xué)習(xí)師徒”,記X為兩人中解出此題的人數(shù),若X的數(shù)學(xué)期望E(X)=1.4,問兩人是否適合結(jié)為“學(xué)習(xí)師徒”? 參考公式及數(shù)據(jù): ,其中n=a+b+c+d.

P(K2≥K0

0.10

0.05

0.025

0.010

K0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機的發(fā)展,微信越來越成為人們交流的一種方式.某機構(gòu)對使用微信交流的態(tài)度進行調(diào)查,隨機調(diào)查了 50 人,他們年齡的頻數(shù)分布及對使用微信交流贊成人數(shù)如表.

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(I)由以上統(tǒng)計數(shù)據(jù)填寫下面 2×2 列聯(lián)表,并判斷是否有99%的把握認為年齡45歲為分界點對使用微信交流的態(tài)度有差異;

年齡不低于45歲的人

年齡低于45歲的人

合計

贊成

不贊成

合計

(Ⅱ)若對年齡在[55,65),[65,75)的被調(diào)查人中隨機抽取兩人進行追蹤調(diào)查,記選中的4人中贊成使用微信交流的人數(shù)為X,求隨機變量X的分布列和數(shù)學(xué)期望
參考公式:K2= ,其中n=a+b+c+d
參考數(shù)據(jù):

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截的線段中點M在直線x+y-3=0上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的圖象與g(x)=logax(a>0,且a≠1)的圖象關(guān)于x軸對稱,且g(x)的圖象過點(9,2).
(1)求函數(shù)f(x)的解析式;
(2)若f(3x1)>f(x+5)成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長為1的正方形,PA⊥平面ABCD,PA=AB,M,N分別為PB,AC的中點,
(1)求證:MN∥平面PAD;
(2)求點B到平面AMN的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一條光線從點A(3,2)發(fā)出,經(jīng)x軸反射后,通過點B(-1,6),求入射光線和反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱 中,∠BAC=90°,BC1⊥AC,則點C1在平面ABC上的射影H必在( )

A.直線AB上
B.直線BC上
C.直線AC上
D.△ABC的內(nèi)部

查看答案和解析>>

同步練習(xí)冊答案