【題目】如圖,在三棱錐中, 底面,. 、分別為和的中點(diǎn). 為側(cè)棱上的動(dòng)點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)試判斷直線(xiàn)與平面是否能夠垂直.若能垂直,求的值;若不能垂直,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析;(Ⅲ) .
【解析】試題分析:
(Ⅰ)由題意結(jié)合幾何關(guān)系可證得是平行四邊形,則, 平面
(Ⅱ)由題意結(jié)合幾何關(guān)系可證得, ,則平面,平面平面;
(Ⅲ)原命題成立,則僅需在平面內(nèi)再找一條和相交的直線(xiàn)和即可.考查的情況,結(jié)合相似三角形的性質(zhì)可得.
試題解析:
(Ⅰ)證明:∵是三棱柱,
∴三個(gè)側(cè)面都是平行四邊形, 且,
又∵、分別為和的中點(diǎn),
∴且,
∴且,
∴是平行四邊形,
∴,
∵平面, 平面,
∴平面.
(Ⅱ)證明:∵底面,
∴底面,
∴,
又∵,,
又∵是中點(diǎn),
∴,
∵, 平面,
∴平面,
則平面平面;
(Ⅲ)直線(xiàn)與平面能夠垂直,且,
由(Ⅱ)知平面,
∴,
若要使平面,僅需在平面內(nèi)再找一條和相交的直線(xiàn)和即可.
此時(shí)我們?nèi)∑矫?/span>內(nèi)和相交的直線(xiàn),
若,則與相似,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,p:,q:.
已知p是q成立的必要不充分條件,求實(shí)數(shù)m的取值范圍;
若是成立的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)滿(mǎn)足如下條件:
①函數(shù)的最小值為,最大值為9;
②且;
③若函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2.
試探究并解決如下問(wèn)題:
(Ⅰ)求,并求的值;
(Ⅱ)求函數(shù)的圖象的對(duì)稱(chēng)軸方程;
(Ⅲ)設(shè)是函數(shù)的零點(diǎn),求的值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最值;
(2)若函數(shù)在上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l1:x+2y+1=0,l2:-2x+y+2=0,它們相交于點(diǎn)A.
(1)判斷直線(xiàn)l1和l2是否垂直?請(qǐng)給出理由.
(2)求過(guò)點(diǎn)A且與直線(xiàn)l3:3x+y+4=0平行的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各一元二次不等式中,解集為空集的是( 。
A.(x+3)(x﹣1)>0B.(x+4)(x﹣1)<0
C.x2﹣2x+3<0D.2x2﹣3x﹣2>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù).
(1)若,求的值;
(2)若是函數(shù)的一個(gè)零點(diǎn),求函數(shù)在區(qū)間的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com