【題目】已知函數(shù)f(x)=sin(2x+)+cos(2x﹣)+cos2x﹣sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[﹣]上的最大值和最小值.
【答案】(1)最小正周期,單調(diào)遞增區(qū)間(2)最大值2和最小值
【解析】
(1)利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用正弦函數(shù)的周期公式可得函數(shù)的周期,利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間;(2)令,由可得,利用正弦函數(shù)的單調(diào)性結(jié)合圖象,即可得到函數(shù)的最大值與最小值.
(1)
,
所以函數(shù)的最小正周期,
由,得,
即函數(shù)的單調(diào)增區(qū)間為.
(2)令,
,
當(dāng)時,為增函數(shù);
當(dāng)時,為減函數(shù),
所以當(dāng),即時,;
當(dāng),即時,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是的導(dǎo)函數(shù)的圖象,對于下列四個判斷,其中正確的判斷是( ).
A.在上是增函數(shù);
B.當(dāng)時,取得極小值;
C.在上是增函數(shù)、在上是減函數(shù);
D.當(dāng)時,取得極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3x2-9x+2.
(1) 求函數(shù)的單調(diào)區(qū)間;
(2) 求函數(shù)在區(qū)間[-2,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,連接橢圓的四個頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線與橢圓相交另一點(diǎn),若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=mx3+x﹣sinx(m∈R).
(1)當(dāng)m=0時,(i)求y=f(x)在(,f())處的切線方程;
(ii)證明:f(x)<ex;
(2)當(dāng)x≥0時,函數(shù)f(x)單調(diào)遞減,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面是菱形的四棱錐中,.
(1)證明:平面;
(2)點(diǎn)在棱上.
①如圖1,若點(diǎn)是線段的中點(diǎn),證明:平面;
②如圖2,若,在棱上是否存在點(diǎn),使得平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcosθ=4,曲線C的極坐標(biāo)方程為ρ=2cosθ+2sinθ,以極點(diǎn)為坐標(biāo)原點(diǎn)O,極軸為x軸的正半軸建立直角坐標(biāo)系,射線l':y=kx(x≥0,0<k<1)與曲線C交于O,M兩點(diǎn).
(Ⅰ)寫出直線l的直角坐標(biāo)方程以及曲線C的參數(shù)方程;
(Ⅱ)若射線l′與直線l交于點(diǎn)N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為維護(hù)交通秩序,防范電動自行車被盜,天津市公安局決定,開展二輪電動自行車免費(fèi)登記、上牌照工作.電動自行車牌照分免費(fèi)和收費(fèi)(安裝防盜裝置)兩大類,群眾可以 自愿選擇安裝.已知甲、乙、丙三個不同類型小區(qū)的人數(shù)分別為15000,15000,20000.交管部門為了解社區(qū)居民意愿,現(xiàn)采用分層抽樣的方法從中抽取10人進(jìn)行電話訪談.
(Ⅰ)應(yīng)從甲小區(qū)和丙小區(qū)的居民中分別抽取多少人?
(Ⅱ)設(shè)從甲小區(qū)抽取的居民為,丙小區(qū)抽取的居民為.現(xiàn)從甲小區(qū)和丙小區(qū)已抽取的居民中隨機(jī)抽取2人接受問卷調(diào)查.
(。┰囉盟o字母列舉出所有可能的抽取結(jié)果;
(ⅱ)設(shè)為事件“抽取的2人來自不同的小區(qū)”,求事件發(fā)生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com