【題目】若點(diǎn)P在橢圓 +y2=1上,F(xiàn)1、F2分別是橢圓的兩焦點(diǎn),且∠F1PF2=60°,則△F1PF2的面積是(
A.
B.
C.
D.

【答案】C
【解析】解:橢圓方程 +y2=1, ∴a= ,b=1,c=1.
又∵P為橢圓上一點(diǎn),∠F1PF2=60°,F(xiàn)1、F2為左右焦點(diǎn),
∴|F1P|+|PF2|=2a=2 ,|F1F2|=2c=2,
∴|F1F2|2=(|PF1|+|PF2|)2﹣2|F1P||PF2|﹣2|F1P||PF2|cos60°,
=8﹣3|F1P||PF2|,
∴8﹣3|F1P||PF2|=4,
∴|F1P||PF2|=
∴SF1PF2= |F1P||PF2|sin60°,
= × × =
故答案選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左頂點(diǎn)為,右焦點(diǎn)為,過點(diǎn)且斜率為1的直線交橢圓于另一點(diǎn),交軸于點(diǎn),

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于兩點(diǎn),連接為坐標(biāo)原點(diǎn))并延長交橢圓于點(diǎn),求面積的最大值及取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC,E為BC的中點(diǎn),F(xiàn)在棱AC上,且AF=3FC,

(1)求證:AC⊥平面DEF;
(2)求平面DEF與平面ABD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x﹣1),g(x)=loga(3﹣x)(a>0且a≠1)
(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;
(2)利用對數(shù)函數(shù)的單調(diào)性,討論不等式f(x)≥g(x)中x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).

(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;

(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間

(2)若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log (3x2﹣ax+5)在[﹣1,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(
A.[﹣8,﹣6]
B.(﹣8,﹣6]
C.(﹣∞,﹣8)∪(﹣6,+∞)
D.(﹣∞,﹣6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2為橢圓C: (a>b>0)的左、右焦點(diǎn),M為橢圓C的上頂點(diǎn),且|MF1|=2,右焦點(diǎn)與右頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l與橢圓C相交于A,B兩點(diǎn),且直線OA,OB的斜率kOA , kOB滿足kOAkOB=﹣ ,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+lnx(a∈R). (Ⅰ)若a=2,求曲線y=f(x)在x=1處切線的斜率;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=x2﹣2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案