【題目】如圖,在四棱錐P—ABCD中,AP⊥CD,AD∥BC,AB=BC=1,AD=2,E,F(xiàn)分別為AD,PC的中點.求證:
(1)AP∥平面BEF;
(2)平面BEF⊥平面PAC.
【答案】(1)見解析(2)見解析
【解析】
(1)設(shè),連接,通過中位線證明來證明平面.(2)證明四邊形為菱形,得到,利用得到,由此證得平面,從而證得平面平面.
證明:
(1)設(shè)AC交BE于點O,連接OF,連接CE.
因為AE=BC=1,AD∥BC,所以四邊形ABCE為平行四邊形.
所以點O為AC的中點,又因為點F為PC的中點.所以OF∥AP.
又因為OF平面BEF,AP平面BEF所以AP∥平面BEF
(2)因為AD∥BC,ED=BC=1,所以四邊形BCDE為平行四邊形.所以BE∥CD.
因為AP⊥CD,所以AP⊥BE.又因為四邊形ABCE為平行四邊形,AB=BC,
所以四邊形ABCE為菱形.所以AC⊥BE.
又因為AP⊥BE,AP∩AC=A,AP平面APC,AC平面APC.
所以BE⊥平面APC.
因為BE平面BEF.所以平面BEF⊥平面PAC.
科目:高中數(shù)學 來源: 題型:
【題目】用五種不同顏色給三棱臺的六個頂點染色,要求每個點染一種顏色,且每條棱的兩個端點染不同顏色.則不同的染色方法有___________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對任意函數(shù),,可按如圖所示,構(gòu)造一個數(shù)列發(fā)生器,其工作原理如下:
①輸入數(shù)據(jù),經(jīng)數(shù)列發(fā)生器輸出;
②若,則數(shù)列發(fā)生器結(jié)束工作;若,將反饋回輸入端,再輸出,并依此規(guī)律進行下去.
現(xiàn)定義.
(1)若輸入,則由數(shù)列發(fā)生器產(chǎn)生數(shù)列,寫出數(shù)列的所有項;
(2)若要使數(shù)列發(fā)生器產(chǎn)生一個無窮的常數(shù)列,試求輸入的初始數(shù)據(jù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過,兩點,且在兩坐標軸上的四個截距之和是.
(1)求圓的方程;
(2)若為圓內(nèi)一點,求過點被圓截得的弦長最短時的直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的二項展開式的各二項式系數(shù)的和與各項系數(shù)的和均為
(1)求展開式中有理項的個數(shù);
(2)求展開式中系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】湖北省從2021年開始將全面推行新高考制度,新高考“3+1+2”中的“2”要求考生從政治、化學、生物、地理四門中選兩科,按照等級賦分計入高考成績,等級賦分規(guī)則如下:高考政治、化學、生物、地理四門等級考試科目的考生原始成績從高到低劃分為A,B,C,D,E五個等級,確定各等級人數(shù)所占比例分別為15%,35%,35%,13%,2%,等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法分別轉(zhuǎn)換到、、、、五個分數(shù)區(qū)間,得到考生的等級分,等級轉(zhuǎn)換分滿分為100分.具體轉(zhuǎn)換分數(shù)區(qū)間如下表:
等級 | A | B | C | D | E |
比例 | 15% | 35% | 35% | 13% | 2% |
賦分區(qū)間 |
而等比例轉(zhuǎn)換法是通過公式計算:,其中、分別表示原始分區(qū)間的最低分和最高分,、分別表示等級分區(qū)間的最低分和最高分,Y表示原始分,T表示轉(zhuǎn)換分,當原始分為、時,等級分分別為、,假設(shè)小明同學的生物考試成績信息如下表:
考試科目 | 考試成績 | 成績等級 | 原始分區(qū)間 | 等級分區(qū)間 |
生物 | 75分 | B等級 |
設(shè)小明轉(zhuǎn)換后的等級成績?yōu)?/span>T,根據(jù)公式得:,所以(四舍五入取整),小明最終生物等級成績?yōu)?/span>77分.已知某學校學生有60人選了政治,以期中考試成績?yōu)樵汲煽冝D(zhuǎn)換該學校選政治的學生的政治等級成績,其中政治成績獲得A等級的學生原始成績統(tǒng)計如下表:
成績 | 90 | 86 | 81 | 80 | 79 | 78 | 75 |
人數(shù) | 1 | 2 | 1 | 1 | 2 | 1 | 1 |
(1)從政治成績獲得A等級的學生中任取3名,求至少有2名同學的等級成績不小于93分的概率;
(2)從政治成績獲得A等級的學生中任取4名,設(shè)4名學生中等級成績不小于93分人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)z滿足|z|= 的虛部為2,z所對應的點在第一象限,
(1)求z;
(2)若z,z2,z-z2在復平面上對應的點分別為A,B,C,求cos∠ABC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某超市花費3萬元購進一批同規(guī)格的月餅,進價為元/盒.上架銷售前發(fā)現(xiàn)有10盒包裝損壞而不能出售,若能將余下的月餅按高出進價50元/盒全部售出,則可最終獲利8000元.
(1)超市共購進該規(guī)格的月餅多少盒?
(2)現(xiàn)進行促銷活動若顧客一次性購買總價不低于600元的月餅,可在總價的基礎(chǔ)上優(yōu)惠元但不得低于促銷前總價的9折,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com