【題目】設(shè)定義域?yàn)?/span>R的函數(shù)

(1)在平面直角坐標(biāo)系中作出函數(shù)fx)的圖象,并指出fx)的單調(diào)區(qū)間(不需證明);

2)若方程fx+5a0有兩個(gè)解,求出a的取值范圍(不需嚴(yán)格證明,簡(jiǎn)單說明即可);

3)設(shè)定義域?yàn)?/span>R的函數(shù)gx)為偶函數(shù),且當(dāng)x≥0時(shí),gx)=fx),求gx)的解析式.

【答案】(1)函數(shù)fx)的增區(qū)間為(﹣10),(1,+∞);減區(qū)間為(﹣,﹣1),(0,1,圖象見解析

(2)

3

【解析】

(1)作出函數(shù)fx)的圖象,由圖象即可觀察得出;

2)方程fx+5a0有兩個(gè)解,等價(jià)于函數(shù)fx)的圖象與直線有兩個(gè)交點(diǎn),由圖即可求出;

3)先求出x≥0時(shí),gx)的解析式,再根據(jù)偶函數(shù)的性質(zhì),求出x0時(shí),gx

的解析式,即可求出定義在上的gx)的解析式.

(1)作出函數(shù)fx)的圖象,如圖所示:

函數(shù)fx)的增區(qū)間為(﹣1,0),(1,+∞),減區(qū)間為(﹣,﹣1),(0,1).

2)要使方程fx+5a0有兩個(gè)解,等價(jià)于函數(shù)fx)的圖象與直線有兩個(gè)交點(diǎn),由圖可知,﹣5a≥1,解得.故實(shí)數(shù)a的取值范圍為;

3)由題意,當(dāng)x0時(shí),gx)=0,當(dāng)x0時(shí),gx)=x22x+1

設(shè)x0,則﹣x0,故g(﹣x)=(﹣x22(﹣x+1x2+2x+1

又函數(shù)gx)為偶函數(shù),故gx)=g(﹣x)=x2+2x+1x0),

綜上,函數(shù)gx)的解析式為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,離心率為,圓是橢圓的左右頂點(diǎn),是圓的任意一條直徑,面積的最大值為2.

(1)求橢圓及圓的方程;

(2)若為圓的任意一條切線,與橢圓交于兩點(diǎn),求的取直范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為:為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的直角坐標(biāo)方程為.

(l)求曲線和直線的極坐標(biāo)方程;

(2)已知直線分別與曲線、曲線交異于極點(diǎn)的,若的極徑分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PD底面ABCD,底面ABCD是邊長(zhǎng)為a的正方形,且PD=a.

(1)求四棱錐P﹣ABCD的體積;

(2)若E為PC中點(diǎn),求證:PA平面BDE;

(3)求直線PB與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn)a,用電量不超過a的部分按平價(jià)收費(fèi),超出a的部分按議價(jià)收費(fèi)為此,政府調(diào)查了100戶居民的月平均用電量單位:度,以,,,,分組的頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計(jì)該市每戶居民月平均用電量的值;

用頻率估計(jì)概率,利用的結(jié)果,假設(shè)該市每戶居民月平均用電量X服從正態(tài)分布

估計(jì)該市居民月平均用電量介于度之間的概率;

利用的結(jié)論,從該市所有居民中隨機(jī)抽取3戶,記月平均用電量介于度之間的戶數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房產(chǎn)中介公司201791日正式開業(yè),現(xiàn)對(duì)其每個(gè)月的二手房成交量進(jìn)行統(tǒng)計(jì),表示開業(yè)第個(gè)月的二手房成交量,得到統(tǒng)計(jì)表格如下:

(1)統(tǒng)計(jì)中常用相關(guān)系數(shù)來衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計(jì)學(xué)認(rèn)為,對(duì)于變量,如果,那么相關(guān)性很強(qiáng);如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱.通過散點(diǎn)圖初步分析可用線性回歸模型擬合的關(guān)系.計(jì)算的相關(guān)系數(shù),并回答是否可以認(rèn)為兩個(gè)變量具有很強(qiáng)的線性相關(guān)關(guān)系(計(jì)算結(jié)果精確到0.01)

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(計(jì)算結(jié)果精確到0.01),并預(yù)測(cè)該房產(chǎn)中介公司20186月份的二手房成交量(計(jì)算結(jié)果四舍五入取整數(shù)).

(3)該房產(chǎn)中介為增加業(yè)績(jī),決定針對(duì)二手房成交客戶開展抽獎(jiǎng)活動(dòng).若抽中“一等獎(jiǎng)”獲6千元獎(jiǎng)金;抽中“二等獎(jiǎng)”獲3千元獎(jiǎng)金;抽中“祝您平安”,則沒有獎(jiǎng)金.已知一次抽獎(jiǎng)活動(dòng)中獲得“一等獎(jiǎng)”的概率為,獲得“二等獎(jiǎng)”的概率為,現(xiàn)有甲、乙兩個(gè)客戶參與抽獎(jiǎng)活動(dòng),假設(shè)他們是否中獎(jiǎng)相互獨(dú)立,求此二人所獲獎(jiǎng)金總額(千元)的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):,,.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某長(zhǎng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼

1

2

3

4

5

6

年產(chǎn)量(萬噸)

6.6

6.7

7

7.1

7.2

7.4

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格(單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

①根據(jù)(1)中所建立的回歸方程預(yù)測(cè)該地區(qū)2018()年該農(nóng)產(chǎn)品的產(chǎn)量;

②當(dāng))為何值時(shí),銷售額最大?

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右焦點(diǎn)且傾斜角為的直線與圓相切,則該雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從集合的所有非空子集中,等可能地取出個(gè).

(1)若,求所取子集的元素既有奇數(shù)又有偶數(shù)的概率;

(2)若,記所取子集的元素個(gè)數(shù)之差為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案