【題目】2018屆安徽省蚌埠市高三上學期第一次教學質(zhì)量檢查】為監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取10件零件,度量其內(nèi)徑尺寸(單位: .根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的內(nèi)徑尺寸服從正態(tài)分布.

1)假設(shè)生產(chǎn)狀態(tài)正常,記表示某一天內(nèi)抽取的10個零件中其尺寸在之外的零件數(shù),求的數(shù)學期望;

2)某天正常工作的一條生產(chǎn)線數(shù)據(jù)記錄的莖葉圖如下圖所示:

①計算這一天平均值與標準差;

②一家公司引進了一條這種生產(chǎn)線,為了檢查這條生產(chǎn)線是否正常,用這條生產(chǎn)線試生產(chǎn)了5個零件,度量其內(nèi)徑分別為(單位: ):85,95,103,109,119,試問此條生產(chǎn)線是否需要進一步調(diào)試,為什么?

參考數(shù)據(jù): , ,

, , ,

, , .

【答案】(1) 2 ②生產(chǎn)線異常,需要進一步調(diào)試

【解析】【試題分析】(1)依題意可知滿足二項分布,根據(jù)二項分布的公式計算出,然后用減去這個值記得到的值.利用二項分布的期望公式,直接計算出的值.(2)分別計算出均值和標準差,計算的范圍,發(fā)現(xiàn)不在這個范圍內(nèi),根據(jù)原理可知需要進一步調(diào)試.

【試題解析】

(1)由題意知:

,

;

(2)①

所以

②結(jié)論:需要進一步調(diào)試.

理由如下:如果生產(chǎn)線正常工作,則服從正態(tài)分布,

零件內(nèi)徑在之外的概率只有0.0026,而根據(jù)原則,知

生產(chǎn)線異常,需要進一步調(diào)試.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為2的菱形,底面.

1)求證:平面;

2)若,直線與平面所成的角為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點的縱坐標為4,且點到焦點的距離為5.

(1)求拋物線的方程;

(2)設(shè)斜率為的兩條平行直線分別經(jīng)過點,如圖. 與拋物線交于兩點, 與拋 物線兩點.問:是否存在實數(shù),使得四邊形的面積為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,求曲線在點處的切線方程;

(2)當時,判斷方程在區(qū)間上有無實根;

(3)若時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年的金秋十月,越野e族阿拉善英雄會在內(nèi)蒙古自治區(qū)阿拉善盟阿左旗騰格里沙漠舉行,該項目已打造成集沙漠競技運動、汽車文化極致體驗、主題休閑度假為一體的超級汽車文化賽事娛樂綜合體.為了減少對環(huán)境的污染,某環(huán)保部門租用了特制環(huán)保車清潔現(xiàn)場垃圾.通過查閱近5年英雄會參會人數(shù)(萬人)與沙漠中所需環(huán)保車輛數(shù)量(輛),得到如下統(tǒng)計表:

參會人數(shù)(萬人)

11

9

8

10

12

所需環(huán)保車輛(輛)

28

23

20

25

29

(1)根據(jù)統(tǒng)計表所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程

(2)已知租用的環(huán)保車平均每輛的費用(元)與數(shù)量(輛)的關(guān)系為

.主辦方根據(jù)實際參會人數(shù)為所需要投入使用的環(huán)保車,

每輛支付費用6000元,超出實際需要的車輛,主辦方不支付任何費用.預計本次英雄會大約有14萬人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預測環(huán)保部門在確保清潔任務(wù)完成的前提下,應租用多少輛環(huán)保車?獲得的利潤是多少?(注:利潤主辦方支付費用租用車輛的費用).

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

Ⅰ)當時,求函數(shù)在區(qū)間上的最大值與最小值;

Ⅱ)當的圖像經(jīng)過點時,求的值及函數(shù)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某城市居民家庭年收入(萬元)和年“享受資料消費”(萬元)進行統(tǒng)計分析,得數(shù)據(jù)如表所示.

6

8

10

12

2

3

5

6

(1)請根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程.

(2)若某家庭年收入為18萬元,預測該家庭年“享受資料消費”為多少?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點在點上方,直角頂點的坐標為

(1)求邊上的高線所在直線的方程;

(2)求等腰直角三角形的外接圓的標準方程;

(3)分別求兩直角邊,所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)F為拋物線的焦點,A,B,C為該拋物線上三點,若,則= ( )

A. 9 B. 6 C. 4 D. 3

查看答案和解析>>

同步練習冊答案