【題目】設(shè)函數(shù)f(x)= ,則滿足f(x)+f(x﹣ )>1的x的取值范圍是

【答案】x>
【解析】解:若x≤0,則x﹣ ≤﹣
則f(x)+f(x﹣ )>1等價為x+1+x﹣ +1>1,即2x>﹣ ,則x> ,
此時 <x≤0,
當(dāng)x>0時,f(x)=2x>1,x﹣ >﹣ ,
當(dāng)x﹣ >0即x> 時,滿足f(x)+f(x﹣ )>1恒成立,
當(dāng)0≥x﹣ >﹣ ,即 ≥x>0時,f(x﹣ )=x﹣ +1=x+ ,
此時f(x)+f(x﹣ )>1恒成立,
綜上x>
所以答案是:x>
【考點精析】認(rèn)真審題,首先需要了解函數(shù)的值域(求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的),還要掌握函數(shù)的值(函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),α∈[0,π)),在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐標(biāo)方程;
(Ⅱ)若曲線C1與C2交于A,B兩點,且|AB|> ,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若 ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,下列結(jié)論錯誤的是(  )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線.

(1)求直線所過定點的坐標(biāo);

(2)求直線被圓所截得的弦長最短時的值及最短弦長.

(3)在(2)的前提下,若為直線上的動點,且圓上存在兩個不同的點到點的距離為1,求點的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線y=x2+mx﹣2與x軸交于A、B兩點,點C的坐標(biāo)為(0,1),當(dāng)m變化時,解答下列問題:(12分)
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A、B、C三點的圓在y軸上截得的弦長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=lnx﹣ax2+x有兩個零點,則實數(shù)a的取值范圍是(
A.(0,1)
B.(﹣∞,1)
C.(﹣∞,
D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊對籃球運(yùn)動員的籃球技能進(jìn)行統(tǒng)計研究,針對籃球運(yùn)動員在投籃命中時,運(yùn)動員距籃筐中心的水平距離這項指標(biāo),對某運(yùn)動員進(jìn)行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分布直方圖:

(1)依據(jù)頻率分布直方圖估算該運(yùn)動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);

(2)若從該運(yùn)動員投籃命中時,他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(單位:米,運(yùn)動員投籃命中時,他到籃筐中心的水平距離越遠(yuǎn)越好),并從抽到的這7次成績中隨機(jī)抽取2次,并規(guī)定:成績來自2到3米這一組時,記1分;成績來自3到4米這一組時,記2分;成績來4到5米的這一組記 4分,求該運(yùn)動員2次總分不少于5分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1 , 則稱{an}具有性質(zhì)P.
(1)若{an}具有性質(zhì)P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c5=1;b5=c1=81,an=bn+cn , 判斷{an}是否具有性質(zhì)P,并說明理由;
(3)設(shè){bn}是無窮數(shù)列,已知an+1=bn+sinan(n∈N*),求證:“對任意a1 , {an}都具有性質(zhì)P”的充要條件為“{bn}是常數(shù)列”.

查看答案和解析>>

同步練習(xí)冊答案