【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若 ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2

【答案】A
【解析】解:如圖:以A為原點(diǎn),以AB,AD所在的直線為x,y軸建立如圖所示的坐標(biāo)系,

則A(0,0),B(1,0),D(0,2),C(1,2),
∵動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上,
設(shè)圓的半徑為r,
∵BC=2,CD=1,
∴BD= =
BCCD= BDr,
∴r= ,
∴圓的方程為(x﹣1)2+(y﹣2)2= ,
設(shè)點(diǎn)P的坐標(biāo)為( cosθ+1, sinθ+2),
,
∴( cosθ+1, sinθ﹣2)=λ(1,0)+μ(0,2)=(λ,2μ),
cosθ+1=λ, sinθ+2=2μ,
∴λ+μ= cosθ+ sinθ+2=sin(θ+φ)+2,其中tanφ=2,
∵﹣1≤sin(θ+φ)≤1,
∴1≤λ+μ≤3,
故λ+μ的最大值為3,
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=8a2lnx+x2+6ax+b(a,b∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x,求a,b的值;
(2)若a≥1,證明:x1 , x2∈(0,+∞),且x1≠x2 , 都有 >14成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與直線,且直線有唯一的一個(gè)點(diǎn),使得過(guò)點(diǎn)作圓的兩條切線互相垂直,則_____;設(shè)是直線上的一條線段,若對(duì)于圓上的任意一點(diǎn),則的最小值_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=( ax , a為常數(shù),且函數(shù)的圖象過(guò)點(diǎn)(﹣1,2).
(1)求a的值;
(2)若g(x)=4x﹣2,且g(x)=f(x),求滿足條件的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(Ⅰ)證明:平面ACD⊥平面ABC;
(Ⅱ)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方體的棱長(zhǎng)為2,則以下四個(gè)命題中錯(cuò)誤的是

A. 直線為異面直線 B. 平面

C. D. 三棱錐的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ,則滿足f(x)+f(x﹣ )>1的x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:

(1)拋物線的焦點(diǎn)是橢圓的上頂點(diǎn);

(2)橢圓的焦距是8,離心率等于

查看答案和解析>>

同步練習(xí)冊(cè)答案