精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=( ax , a為常數,且函數的圖象過點(﹣1,2).
(1)求a的值;
(2)若g(x)=4x﹣2,且g(x)=f(x),求滿足條件的x的值.

【答案】
(1)解:由已知得( a=2,解得a=1
(2)解:由(1)知f(x)=( x

又g(x)=f(x),則4x﹣2=( x,即( x﹣( x﹣2=0,即[( x]2﹣( x﹣2=0,

令( x=t,則t2﹣t﹣2=0,即(t﹣2)(t+1)=0,

又t>0,故t=2,即( x=2,解得x=﹣1,

滿足條件的x的值為﹣1


【解析】(1)代入點的坐標,即得a的值;(2)根據條件得到關于x的方程,解之即可.
【考點精析】解答此題的關鍵在于理解指數函數的單調性與特殊點的相關知識,掌握0<a<1時:在定義域上是單調減函數;a>1時:在定義域上是單調增函數,以及對函數的零點的理解,了解函數的零點就是方程的實數根,亦即函數的圖象與軸交點的橫坐標.即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)當, 取得極值的值;

(Ⅱ)當函數有兩個極值點,總有 成立,的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數方程為 (t為參數,α∈[0,π)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐標方程;
(Ⅱ)若曲線C1與C2交于A,B兩點,且|AB|> ,求α的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某興趣小組欲研究某地區(qū)晝夜溫差大小與患感冒就診人數之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1到5月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

晝夜溫差

8

10

13

12

9

就診人數(個)

18

25

28

26

17

該興趣小組確定的研究方案是:先從這5組數據中選取一組,用剩下的4組數據求線性回歸方程,再用選取的一組數據進行檢驗.

(1)若選取的是1月的一組數據,請根據2至5月份的數據.求出關于的線性回歸方程

(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差不超過2,則認為得到的線性回歸方程是理想的,試判斷該小組所得的線性回歸方程是否理想?如果不理想,請說明理由,如果理想,試預測晝夜溫差為時,因感冒而就診的人數約為多少?

參考公式:, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC中,AC=3,BC=4,AB=5,A=4.

(1)證明:;

(2)求二面角的余弦值大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線l過點P(2, )且傾斜角為α,以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρ=4cos(θ﹣ ),直線l與曲線C相交于A,B兩點;
(1)求曲線C的直角坐標方程;
(2)若 ,求直線l的傾斜角α的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若 ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市為了解游客人數的變化規(guī)律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.

根據該折線圖,下列結論錯誤的是( 。
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進行統計研究,針對籃球運動員在投籃命中時,運動員距籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統計,依據統計結果繪制如下頻率分布直方圖:

(1)依據頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數;

(2)若從該運動員投籃命中時,他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(單位:米,運動員投籃命中時,他到籃筐中心的水平距離越遠越好),并從抽到的這7次成績中隨機抽取2次,并規(guī)定:成績來自2到3米這一組時,記1分;成績來自3到4米這一組時,記2分;成績來4到5米的這一組記 4分,求該運動員2次總分不少于5分的概率.

查看答案和解析>>

同步練習冊答案