【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),α∈[0,π)),在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐標(biāo)方程;
(Ⅱ)若曲線C1與C2交于A,B兩點,且|AB|> ,求α的取值范圍.

【答案】解:(Ⅰ)曲線C2:ρ=4cosθ,即ρ2=4ρcosθ,化為直角坐標(biāo)方程:x2+y2=4x,配方為 C2:(x﹣2)2+y2=4,可得圓心(2,0),半徑r=2; (Ⅱ)設(shè)曲線C1的方程為y=k(x+1),即kx﹣y+k=0,圓心到直線的距離d=
∵曲線C1與C2交于A,B兩點,且|AB|> ,
∴d= ,∴∴k<﹣ 或k> ,
∴30°<α<120°
【解析】(Ⅰ)曲線C2:ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2 , x=ρcosθ代入可得C的直角坐標(biāo)方程.(Ⅱ)求出圓心到直線的距離d,利用|AB|> ,求α的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某工廠兩車間工人掌握某技術(shù)情況,現(xiàn)從這兩車間工人中分別抽查名和名工人,經(jīng)測試,將這名工人的測試成績編成的莖葉圖若成績在以上(包括)定義為“良好,成績在以下定義為“合格”。已知車間工人的成績的平均數(shù)為,車間工人的成績的中位數(shù)為.

(1)求,的值

(2)求車間工人的成績的方差;

(3)在這名工人中,用分層抽樣的方法從 “良好”和“及格”中抽取,再從這人中選人,求至少有一人為“良好”的概率。

參考公式:方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=8a2lnx+x2+6ax+b(a,b∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線方程為y=2x,求a,b的值;
(2)若a≥1,證明:x1 , x2∈(0,+∞),且x1≠x2 , 都有 >14成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生對其親屬30人的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用下圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主)

(1)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:

主食 蔬菜

主食 肉類

總計

50歲以下

50歲以上

總計

(2)能否在犯錯誤的概率不超過0.010的前提下認(rèn)為“其親屬的飲食習(xí)慣與年齡有關(guān)”?并寫出簡要分析.

附參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥BC,E是棱PC的中點,∠DAB=90°,AB∥CD,AD=CD=2AB=2.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)若二面角E﹣BD﹣P大于60°,求四棱錐P﹣ABCD體積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,則方程f(x)﹣f′(x)=2的解所在的區(qū)間是(
A.(0,
B.( ,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線,且直線有唯一的一個點,使得過點作圓的兩條切線互相垂直,則_____;設(shè)是直線上的一條線段,若對于圓上的任意一點,則的最小值_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( ax , a為常數(shù),且函數(shù)的圖象過點(﹣1,2).
(1)求a的值;
(2)若g(x)=4x﹣2,且g(x)=f(x),求滿足條件的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,則滿足f(x)+f(x﹣ )>1的x的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案