【題目】如圖是某市31日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇31日至313日中的某一天到達(dá)該市,并停留2天.

Ⅰ)求此人到達(dá)當(dāng)日空氣重度污染的概率;

Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望;

Ⅲ)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

【答案】(Ⅰ) ;(Ⅱ)答案見(jiàn)解析;(Ⅲ)從35日開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大.

【解析】試題分析:(1)先確定空氣重度污染日,再根據(jù)古典概型概率公式求概率為,2先確定隨機(jī)變量取法,再分別求對(duì)應(yīng)概率,最后根據(jù)數(shù)學(xué)期望公式求期望,(3) 方差最大,即數(shù)據(jù)變化幅度最大,由圖可得結(jié)論.

試題解析:設(shè)Ai表示事件此人于3i日到達(dá)該市i=12,13).

根據(jù)題意, ,且

Ⅰ)設(shè)B為事件此人到達(dá)當(dāng)日空氣重度污染,則

Ⅱ)由題意可知,X的所有可能取值為0,12,且

,

X的分布列為:

X

0

1

2

P

X的數(shù)學(xué)期望

Ⅲ)從35日開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在的人基本每天都離不開(kāi)手機(jī),許多人手機(jī)一旦不在身邊就不舒服,幾乎達(dá)到手機(jī)二十四小時(shí)不離身,這類人群被稱為“手機(jī)控”,這一群體在大學(xué)生中比較突出.為了調(diào)查大學(xué)生每天使用手機(jī)的時(shí)間,某調(diào)查公司針對(duì)某高校男生、女生各25名學(xué)生進(jìn)行了調(diào)查,其中每天使用手機(jī)時(shí)間超過(guò)8小時(shí)的被稱為:“手機(jī)控”,否則被稱為“非手機(jī)控”.調(diào)查結(jié)果如下:

手機(jī)控

非手機(jī)控

合計(jì)

女生

5

男生

10

合計(jì)

50

(1)將上面的列聯(lián)表補(bǔ)充完整,再判斷是否有99.5%的把握認(rèn)為“手機(jī)控”與性別有關(guān),說(shuō)明你的理由;

(2)現(xiàn)從被調(diào)查的男生中按分層抽樣的方法選出5人,再?gòu)倪@5人中隨機(jī)選取3人參加座談會(huì),記這3人中“手機(jī)控”的人數(shù)為,試求的分布列與數(shù)學(xué)期望.

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面平面,,的中點(diǎn).

(1)若,求證:平面:

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))

(1)若,當(dāng)時(shí),試比較2的大。

(2)若函數(shù)有兩個(gè)極值點(diǎn),求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高考復(fù)習(xí)經(jīng)過(guò)二輪“見(jiàn)多識(shí)廣”之后,為了研究考前“限時(shí)搶分”強(qiáng)化訓(xùn)練次數(shù)與答題正確率的關(guān)系,對(duì)某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計(jì),得到如表數(shù)據(jù):

1

2

3

4

20

30

50

60

(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)答題正確率是的強(qiáng)化訓(xùn)練次數(shù)(保留整數(shù));

(2)若用)表示統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”(保留整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強(qiáng)化訓(xùn)練有效,請(qǐng)問(wèn)這個(gè)班的強(qiáng)化訓(xùn)練是否有效?

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

, ,樣本數(shù)據(jù) ,…, 的標(biāo)準(zhǔn)差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面為菱形,,上的點(diǎn),過(guò)的平面分別交,于點(diǎn),,且平面.

(1)證明:;

(2)當(dāng)的中點(diǎn),與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某技術(shù)公司開(kāi)發(fā)的某種產(chǎn)品中隨機(jī)抽取200件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值(記為),由測(cè)量結(jié)果得到如下頻率分布直方圖:

公司規(guī)定:當(dāng)時(shí),產(chǎn)品為正品;當(dāng)時(shí),產(chǎn)品為次品,公司每生產(chǎn)一件這種產(chǎn)品,若是正品,則盈利90元;若是次品,則虧損30元,記的分布列和數(shù)學(xué)期望;

由頻率分布直方圖可以認(rèn)為,服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)

①利用該正態(tài)分布,求;

②某客戶從該公司購(gòu)買了500件這種產(chǎn)品,記表示這500件產(chǎn)品中該項(xiàng)質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù),利用①的結(jié)果,求.

附:

,則,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4,坐標(biāo)系與參數(shù)方程

已知在平面直角坐標(biāo)系xOy中,橢圓C的方程為,以O為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程;

(2)設(shè)Mxy)為橢圓C上任意一點(diǎn),求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線上.經(jīng)測(cè)量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營(yíng),打算在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點(diǎn),并要求與扇形弧相切于點(diǎn).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計(jì).

(1)試將公路的長(zhǎng)度表示為的函數(shù),并寫出的取值范圍;

(2)試確定的值,使得公路的長(zhǎng)度最小,并求出其最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案