(本小題滿分12分)
已知曲線C上任意一點M到點F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過點P(2,2)的直線與曲線C交于A、B兩點,設(shè)當△AOB的面積為時(O為坐標原點),求的值.
(3)若函數(shù)在[1,3]上是減函數(shù),求實數(shù)a的取值范圍.
(1)的距離小于1,
∴點M在直線l的上方,點M到F(1,0)的距離與它到直線的距離相等
,所以曲線C的方程為
(2)當直線m的斜率不存在時,它與曲線C只有一個交點,不合題意,
設(shè)直線m的方程為,
代入 (*)
與曲線C恒有兩個不同的交點   
設(shè)交點A,B的坐標分別為,


點O到直線m的距離

,
(舍去)
方程(*)的解為


方程(☆)的解為


所以,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點坐標(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線y = x +1被橢圓x 2+2y 2=4所截得的弦的中點坐標是     (   )
A.(, -)B.(-, )
C.(, -)D.(-,)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知A,B分別是直線yxy=-x上的兩個動點,線段AB的長為2,DAB的中點.
(1)求動點D的軌跡C的方程;
(2)若過點(1,0)的直線l與曲線C交于不同兩點PQ,
①當|PQ|=3時,求直線l的方程;
②設(shè)點E(m,0)是x軸上一點,求當·恒為定值時E點的坐標及定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點(1,0)和定圓B:動圓P和定圓B相切并過A點,
(1)  求動圓P的圓心P的軌跡C的方程。
(2)  設(shè)Q是軌跡C上任意一點,求的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對任意實數(shù),直線與橢圓恒有公共點,則
取值范圍是         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)在平面直角坐標系中,設(shè)點,直線:,點在直線上移動,是線段軸的交點,
(I)求動點的軌跡的方程;
(II)設(shè)圓,且圓心在曲上, 設(shè)圓,且圓心在曲線 上,是圓軸上截得的弦,當運動時弦長是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
拋物線的頂點在原點,焦點F與雙曲線的右焦點重合,過點且斜率為1的直線與拋物線交于兩點
(1)求拋物線的方程
(2)求弦中點到拋物線準線的距離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,焦點在軸上,長軸長是短軸長的倍且經(jīng)過點M
(Ⅰ)求橢圓C的方程
(Ⅱ)過圓上的任一點作圓的一條切線交橢圓C與A、B兩點
①求證:
②求|AB|的取值范圍

查看答案和解析>>

同步練習冊答案