(本小題滿分13分)已知AB分別是直線yxy=-x上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2DAB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過(guò)點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)P、Q,
①當(dāng)|PQ|=3時(shí),求直線l的方程;
②設(shè)點(diǎn)E(m,0)是x軸上一點(diǎn),求當(dāng)·恒為定值時(shí)E點(diǎn)的坐標(biāo)及定值.
解: (1)設(shè)D(x,y),A(a,a),B(b,-b),
DAB的中點(diǎn), ∴x,y,
∵ |AB|=2,∴(ab)2+(ab)2=12,
∴(2y)2+(2x)2=12,∴點(diǎn)D的軌跡C的方程為x2y2=3.
(2) ①當(dāng)直線lx軸垂直時(shí),P(1,),Q(1,-),
此時(shí)|PQ|=2,不符合題意;
當(dāng)直線lx軸不垂直時(shí),設(shè)直線l的方程為yk(x-1),
由于|PQ|=3,所以圓心C到直線l的距離為,
,解得k.故直線l的方程為y(x-1).
②當(dāng)直線l的斜率存在時(shí),設(shè)其斜率為k,則l的方程為yk(x-1),
由消去y得(k2+1)x2-2k2xk2-3=0,
設(shè)P(x1,y1),Q(x2,y2)則由韋達(dá)定理得x1x2,x1x2,
=(mx1,-y1),=(mx2,-y2),
·=(mx1)(mx2)+y1y2m2m(x1x2)+x1x2y1y2
m2m(x1x2)+x1x2k2(x1-1)(x2-1)
m2k2 (+1)=
要使上式為定值須=1,解得m=1,
·為定值-2,
當(dāng)直線l的斜率不存在時(shí)P(1,),Q(1,-),
E(1,0)可得=(0,-),=(0,),
·=-2,           
綜上所述當(dāng)E(1,0)時(shí),·為定值-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,頂點(diǎn)A,B,動(dòng)點(diǎn)D,E滿足:①;②,③共線.
(Ⅰ)求△ABC頂點(diǎn)C的軌跡方程;
(Ⅱ)是否存在圓心在原點(diǎn)的圓,只要該圓的切線與頂點(diǎn)C的軌跡有兩個(gè)不同交點(diǎn)M,N,就一定有,若存在,求該圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線及其在點(diǎn)處的兩條切線所圍成圖形的面積為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的方程為,點(diǎn)分別為其左、右頂點(diǎn),點(diǎn)分別為其左、右焦點(diǎn),以點(diǎn)為圓心,為半徑作圓;以點(diǎn)為圓心,為半徑作圓;若直線被圓和圓截得的弦長(zhǎng)之比為;
(1)求橢圓的離心率;
(2)己知,問(wèn)是否存在點(diǎn),使得過(guò)點(diǎn)有無(wú)數(shù)條直線被圓和圓截得的弦長(zhǎng)之比為;若存在,請(qǐng)求出所有的點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知曲線C上任意一點(diǎn)M到點(diǎn)F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)P(2,2)的直線與曲線C交于A、B兩點(diǎn),設(shè)當(dāng)△AOB的面積為時(shí)(O為坐標(biāo)原點(diǎn)),求的值.
(3)若函數(shù)在[1,3]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知F1(-2,0),F(xiàn)2(2,0),點(diǎn)P滿足∣PF1∣-∣PF2∣=2,記點(diǎn)P的軌跡為E.
(I)求軌跡E的方程
(II)若直線過(guò)點(diǎn)F2且與軌跡E交于P,Q兩點(diǎn).無(wú)論直線繞點(diǎn)F2怎樣轉(zhuǎn)動(dòng),在x軸上總存在定點(diǎn)M(m,0),使MP⊥MQ恒成立,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
定長(zhǎng)為3的線段AB兩端點(diǎn)A、B分別在軸,軸上滑動(dòng),M在線段AB上,且
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)過(guò)且不垂直于坐標(biāo)軸的動(dòng)直線交軌跡C于A、B兩點(diǎn),問(wèn):線段
是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線y=x+b與曲線x=恰有一個(gè)交點(diǎn),則實(shí)數(shù)的b的取值范圍是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案