【題目】已知函數(shù),(為正常數(shù)),且函數(shù)與的圖像在軸上的截距相等;
(1)求的值;
(2)若(為常數(shù)),試討論函數(shù)的奇偶性.
【答案】(1);(2)答案不唯一,見解析
【解析】
(1)利用函數(shù)f(x)與g(x)的圖象在y軸上的截距相等,建立方程,可求a的值;
(2)利用奇偶函數(shù)的定義,確定b的值,進(jìn)而可得函數(shù)的奇偶性.
(1)由題意,∵函數(shù)f(x)與g(x)的圖象在y軸上的截距相等,∴f(0)=g(0),即|a|=1,又a>0,故a=1.
(2)h(x)=f(x)+b=|x﹣1|+b|x+1|,其定義域?yàn)?/span>R,∴h(﹣x)=|x+1|+b|x﹣1|.
若h(x)為偶函數(shù),即h(x)=h(﹣x),則有b=1,此時(shí)h(2)=4,h(﹣2)=4,
故h(2)≠﹣h(﹣2),即h(x)不為奇函數(shù);
若h(x)為奇函數(shù),即h(x)=﹣h(﹣x),則b=﹣1,此時(shí)h(2)=2,h(﹣2)=﹣2,
故h(2)≠h(﹣2),即h(x)不為偶函數(shù);
綜上,當(dāng)且僅當(dāng)b=1時(shí),函數(shù)h(x)為偶函數(shù),且不為奇函數(shù),當(dāng)且僅當(dāng)b=﹣1時(shí),函數(shù)h(x)為奇函數(shù),且不為偶函數(shù),當(dāng)b≠±1時(shí),函數(shù)h(x)既非奇函數(shù)又非偶函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某地區(qū)某種昆蟲產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了一只該品種昆蟲的產(chǎn)卵數(shù)(個(gè))和溫度()的7組觀測數(shù)據(jù),其散點(diǎn)圖如所示:
根據(jù)散點(diǎn)圖,結(jié)合函數(shù)知識(shí),可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度可用方程來擬合,令,結(jié)合樣本數(shù)據(jù)可知與溫度可用線性回歸方程來擬合.根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和溫度的回歸方程(回歸系數(shù)結(jié)果精確到);
(2)求產(chǎn)卵數(shù)關(guān)于溫度的回歸方程;若該地區(qū)一段時(shí)間內(nèi)的氣溫在之間(包括與),估計(jì)該品種一只昆蟲的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):,,,,.)
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,,動(dòng)點(diǎn)滿足:直線與直線的斜率之積恒為,記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若點(diǎn)位于第一象限,過點(diǎn),分別作直線,直線,直線,交于點(diǎn).
①若點(diǎn)的橫坐標(biāo)為-1,求點(diǎn)的坐標(biāo);
②直線與曲線交于點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),有下列五個(gè)命題:
①若存在反函數(shù),且與反函數(shù)圖象有公共點(diǎn),則公共點(diǎn)一定在直線上;
②若在上有定義,則一定是偶函數(shù);
③若是偶函數(shù),且有解,則解的個(gè)數(shù)一定是偶數(shù);
④若是函數(shù)的周期,則,也是函數(shù)的周期;
⑤是函數(shù)為奇函數(shù)的充分不必要條件。
從中任意抽取一個(gè),恰好是真命題的概率為 ( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線C:y2=2px(P>0)的焦點(diǎn),過F垂直于x軸的直線被C截得的弦的長度為4.
(1)求拋物線C的方程.
(2)過點(diǎn)(m,0),且斜率為1的直線被拋物線C截得的弦為AB,若點(diǎn)F在以AB為直徑的圓內(nèi),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),實(shí)數(shù)滿足;
(1)當(dāng)函數(shù)的定義域?yàn)?/span>時(shí),求的值域;
(2)求函數(shù)關(guān)系式,并求函數(shù)的定義域;
(3)在(2)的結(jié)論中,對任意,都存在,使得成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在的表格填上數(shù)字,設(shè)在第i行第j列所組成的數(shù)字為,,,則表格中共有5個(gè)1的填表方法種數(shù)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),如果存在實(shí)數(shù)(,且不同時(shí)成立),使得對恒成立,則稱函數(shù)為“映像函數(shù)”.
(1)判斷函數(shù)是否是“映像函數(shù)”,如果是,請求出相應(yīng)的的值,若不是,請說明理由;
(2)已知函數(shù)是定義在上的“映像函數(shù)”,且當(dāng)時(shí),.求函數(shù)()的反函數(shù);
(3)在(2)的條件下,試構(gòu)造一個(gè)數(shù)列,使得當(dāng)時(shí),,并求時(shí),函數(shù)的解析式,及的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于在某個(gè)區(qū)間上有意義的函數(shù),如果存在一次函數(shù)使得對于任意的,有恒成立,則稱函數(shù)是函數(shù)的一個(gè)弱漸近函數(shù).
(1)若函數(shù)是函數(shù)在區(qū)間上的一個(gè)弱漸近函數(shù),求實(shí)數(shù)的取值范圍;
(2)證明:函數(shù)是函數(shù)在區(qū)間上的弱漸近函數(shù);
(3)試問:函數(shù)與函數(shù)(其中為自然對數(shù)的底數(shù))在區(qū)間上是否存在相同的弱漸近函數(shù)?如果存在,請求出對應(yīng)的弱漸近函數(shù)應(yīng)滿足的條件;如不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com