【題目】已知函數(shù),函數(shù)的圖象經(jīng)過,其導函數(shù)的圖象是斜率為,過定點的一條直線.
(1)討論的單調性;
(2)當時,不等式恒成立,求整數(shù)的最小值.
【答案】(1)當時,在上為減函數(shù);
當時,在上為減函數(shù),在上為增函數(shù).
(2)2
【解析】
對求導,得到,按和進行分類討論,利用導函數(shù)的正負,得到的單調性;(2)根據(jù)題意先得到,然后得到的解析式,設,按和分別討論,利用得到的單調性和最大值,然后研究其最大值恒小于等于時,整數(shù)的最小值.
(1)函數(shù)的定義域是,,
當時,,所以在上為減函數(shù),
當時,令,則,
當時,,為減函數(shù),
當時,,為增函數(shù),
綜上,當時,在上為減函數(shù);
當時,在上為減函數(shù),在上為增函數(shù).
(2)根據(jù)題意,,
設,代入,可得,
令,
所以.
當時,因為,所以.
所以在上是單調遞增函數(shù),
又因為,
所以關于x的不等式不能恒成立.
當時,,
令,得.
所以當時,;
當時,,
因此函數(shù)在上是增函數(shù),在上是減函數(shù).
故函數(shù)的最大值為.
令,因為,
又因為在上是減函數(shù).
所以當時,.
所以整數(shù)的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】對于,若數(shù)列滿足,則稱這個數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)的取值范圍;
(Ⅱ)是否存在首項為-1的等差數(shù)列為“K數(shù)列”,且其前n項和滿足
?若存在,求出的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在上的函數(shù),若函數(shù)滿足:
①在區(qū)間上單調遞減,②存在常數(shù)p,使其值域為,則稱函數(shù)是函數(shù)的“逼進函數(shù)”.
(1)判斷函數(shù)是不是函數(shù)的“逼進函數(shù)”;
(2)求證:函數(shù)不是函數(shù),的“逼進函數(shù)”
(3)若是函數(shù)的“逼進函數(shù)”,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的數(shù)滿足,當時.若關于的方程有三個不相等的實數(shù)根,則實數(shù)的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有l000名員工,其中男性員工400名,采用分層抽樣的方法隨機抽取100名員工進行5G手機購買意向的調查,將計劃在今年購買5G手機的員工稱為“追光族”,計劃在明年及明年以后才購買5G手機的員工稱為“觀望者”調查結果發(fā)現(xiàn)抽取的這100名員工中屬于“追光族”的女性員工和男性員工各有20人.
(Ⅰ)完成下列列聯(lián)表,并判斷是否有的把握認為該公司員工屬于“追光族”與“性別”有關;
屬于“追光族” | 屬于“觀望者” | 合計 | |
女性員工 | |||
男性員工 | |||
合計 | 100 |
(Ⅱ)已知被抽取的這l00名員工中有6名是人事部的員工,這6名中有3名屬于“追光族”現(xiàn)從這6名中隨機抽取3名,求抽取到的3名中恰有1名屬于“追光族”的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系中的坐標原點為極點,軸的正半抽為極軸,建立極坐標系,曲線的極坐標方程是,直線的參數(shù)方程是(為參數(shù)).
(1)求曲線的直角坐標方程;
(2)若直線與曲線交于、兩點,且,求直線的傾斜角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com