【題目】已知f(x)=2ax﹣ +lnx在x=1與x= 處都取得極值. (Ⅰ) 求a,b的值;
(Ⅱ)設(shè)函數(shù)g(x)=x2﹣2mx+m,若對任意的x1∈[ ,2],總存在x2∈[ ,2],使得g(x1)≥f(x2)﹣lnx2 , 求實數(shù)m的取值范圍.

【答案】解:(Ⅰ)∵ , ∵ 在x=1與 處都取得極值,
∴f'(1)=0, ,∴ ,解得 ,
時,
所以函數(shù)f(x)在x=1與 處都取得極值.
;
(Ⅱ)由(Ⅰ)知:函數(shù) 上遞減,
∴[f(x)﹣g(x)]min=﹣ + =﹣
又函數(shù)g(x)=x2﹣2mx+m圖象的對稱軸是x=m,
①當 時: ,依題意有 成立,∴ ;
②當 時: ,
,即6m2﹣6m﹣7≤0,解得: ,
又∵ ,∴ ;
③當m>2時,g(x)min=g(2)=4﹣3m,∴ ,解得
又 m>2,∴m∈;
綜上: ,
所以,實數(shù)m的取值范圍為
【解析】(Ⅰ)求導數(shù)f′(x),由f(x)在x=1與 處都取得極值,得f'(1)=0, ,得關(guān)于a,b的方程組,解出a,b,然后檢驗;(Ⅱ)對任意的 ,總存在 ,使得g(x1)≥f(x2)﹣lnx2 , 等價于g(x)min≥[f(x)﹣lnx]min , 利用函數(shù)單調(diào)性易求[f(x)﹣lnx]min , 按照對稱軸在區(qū)間[ ,2]的左側(cè)、內(nèi)部、右側(cè)三種情況進行討論可求得g(x)min , 然后解不等式g(x)min≥[f(x)﹣lnx]min可得答案;
【考點精析】本題主要考查了函數(shù)的極值和函數(shù)的最大(小)值與導數(shù)的相關(guān)知識點,需要掌握極值反映的是函數(shù)在某一點附近的大小情況;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若不等式f(﹣2m2+2m﹣1)+f(8m+ek)>0(e是自然對數(shù)的底數(shù)),對任意的m∈[﹣2,4]恒成立,則整數(shù)k的最小值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù) ,其中0<ω<2; (Ⅰ)若f(x)的最小正周期為π,求f(x)的單調(diào)增區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象的一條對稱軸為 ,求ω的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|+2x.
(1)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的取值范圍;
(2)求所有的實數(shù)a,使得對任意x∈[1,2]時,函數(shù)f(x)的圖象恒在函數(shù)g(x)=2x+1圖象的下方;
(3)若存在a∈[﹣4,4],使得關(guān)于x的方程f(x)=tf(a)有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x3﹣2ax2+3a2x+b(a>0).
(1)當y=f(x)的極小值為1時,求b的值;
(2)若f(x)在區(qū)間[1,2]上是減函數(shù),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個函數(shù)f(x)和g(x)的定義域和值域都是集合{1,2,3},其定義如下表:則方程g(f(x))=x的解集為(

x

1

2

3

f(x)

2

3

1

x

1

2

3

g(x)

3

2

1


A.{1}
B.{2}
C.{3}
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx﹣ )+1(A>0,ω>0)的最大值為3,其圖象的相鄰兩條對稱軸之間的距離為
(1)求函數(shù)f(x)對稱中心的坐標;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)m是實數(shù),f(x)=m﹣ (x∈R)
(1)若函數(shù)f(x)為奇函數(shù),求m的值;
(2)試用定義證明:對于任意m,f(x)在R上為單調(diào)遞增函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),且不等式f(k3x)+f(3x﹣9x﹣2)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校擬建一塊周長為400m的操場如圖所示,操場的兩頭是半圓形,中間區(qū)域是矩形,學生做操一般安排在矩形區(qū)域,為了能讓學生的做操區(qū)域盡可能大,試問如何設(shè)計矩形的長和寬?

查看答案和解析>>

同步練習冊答案