【題目】正項(xiàng)數(shù)列{an}前n項(xiàng)和為Sn , 且 (n∈N+)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若 ,數(shù)列{bn}的前n項(xiàng)和為Tn , 證明:T2n﹣1>1>T2n(n∈N+).
【答案】
(1)解:依題意,當(dāng)n=1時(shí),a1=1;
當(dāng)n≥2時(shí),因?yàn)閍n>0, ,
所以 ,
兩式相減,整理得:an﹣an﹣1=2,
所以數(shù)列{an}是以1為首項(xiàng)、2為公差的等差數(shù)列,
所以an=2n﹣1;
(2)證明:由(1)可知 ,
所以 ,
,
所以T2n﹣1>1>T2n(n∈N+)
【解析】(1)在 中令n=1可知a1=1;當(dāng)n≥2時(shí),利用 與 作差,整理可知an﹣an﹣1=2,進(jìn)而計(jì)算可得結(jié)論;(2)通過(1)裂項(xiàng),分奇數(shù)、偶數(shù)兩種情況討論即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇.
方案甲:員工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率均為,第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束,若中獎(jiǎng),則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng)。規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),則獲得1000元;若未中獎(jiǎng),則所獲得獎(jiǎng)金為0元.
方案乙:員工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為,每次中獎(jiǎng)均可獲得獎(jiǎng)金400元.
(1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獎(jiǎng)金(元)的分布列;
(2)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),哪個(gè)方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)已知雙曲線的焦點(diǎn)為,過的直線與曲線相交于兩點(diǎn).
(1)若直線的傾斜角為,且,求;
(2)若,橢圓上兩個(gè)點(diǎn)滿足: 三點(diǎn)共線且,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC, 點(diǎn)D是AB的中點(diǎn).
(Ⅰ)求證:CD⊥平面A1ABB1;
(Ⅱ)求證:AC1∥平面CDB1;
(Ⅲ)線段AB上是否存在點(diǎn)M,使得A1M⊥平面CDB1?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳統(tǒng)文化就是文明演化而匯集成的一種反映民族特質(zhì)和風(fēng)貌的民族文化,是民族歷史上各種思想文化、觀念形態(tài)的總體表征.教育部考試中心確定了2017年普通高考部分學(xué)科更注重傳統(tǒng)文化考核.某校為了了解高二年級(jí)中國數(shù)學(xué)傳統(tǒng)文化選修課的教學(xué)效果,進(jìn)行了一次階段檢測,并從中隨機(jī)抽取80名同學(xué)的成績,然后就其成績分為五個(gè)等級(jí)進(jìn)行數(shù)據(jù)統(tǒng)計(jì)如下:
根據(jù)以上抽樣調(diào)查數(shù)據(jù),視頻率為概率.
(1)若該校高二年級(jí)共有1000名學(xué)生,試估算該校高二年級(jí)學(xué)生獲得成績?yōu)?/span>的人數(shù);
(2)若等級(jí)分別對應(yīng)100分、80分、60分、40分、20分,學(xué)校要求“平均分達(dá)60分以上”為“教學(xué)達(dá)標(biāo)”,請問該校高二年級(jí)此階段教學(xué)是否達(dá)標(biāo)?
(3)為更深入了解教學(xué)情況,將成績等級(jí)為的學(xué)生中,按分層抽樣抽取7人,再從中任意抽取3名,求抽到成績?yōu)?/span>的人數(shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,已知AB=9,BC=6, =2 .
(1)若四邊形ABCD是矩形,求 的值;
(2)若四邊形ABCD是平行四邊形,且 =6,求 與 夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯(cuò)誤的是( )
A. 如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面
B. 如果平面平面,平面平面, ,那么平面
C. 不存在四個(gè)角都是直角的空間四邊形
D. 空間圖形經(jīng)過中心投影后,直線還是直線,但平行直線可能變成相交的直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在區(qū)間上的函數(shù)和,如果對任意,都有成立,則稱在區(qū)間上可被替代, 稱為“替代區(qū)間”.給出以下問題:
①在區(qū)間上可被替代;
②如果在區(qū)間可被替代,則;
③設(shè),則存在實(shí)數(shù)及區(qū)間, 使得在區(qū)間上被替代.
其中真命題是
A. ①②③ B. ②③ C. ①③ D. ①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com