【題目】已知單調遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2 , a4的等差中項. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=anlog2an , 其前n項和為Sn , 若(n﹣1)2≤m(Sn﹣n﹣1)對于n≥2恒成立,求實數(shù)m的取值范圍.
【答案】解:(Ⅰ)設等比數(shù)列的{an}首項為a1 , 公比為q. 由題意可知: ,
解得: 或 ,
∵數(shù)列為單調遞增的等比數(shù)列,
∴an=2n;
(Ⅱ)bn=anlog2an =n2n ,
∴Sn=b1+b2+…+bn=121+222+…+n2n , ①
2Sn=122+223+324+…+n2n+1 , ②
① ﹣②,得:﹣Sn=2+22+23+…+2n﹣n2n+1
= ﹣n2n+1=2n+1﹣2﹣n2n+1 ,
∴Sn=(n﹣1)2n+1+2,
若(n﹣1)2≤m(Sn﹣n﹣1)對于n≥2恒成立,
則(n﹣1)2≤m[(n﹣1)2n+1+2﹣n﹣1]=m[(n﹣1)2n+1+1﹣n]對于n≥2恒成立,
即 = 對于n≥2恒成立,
∵ = ,
∴數(shù)列{ }為遞減數(shù)列,
則當n=2時, 的最大值為 .
∴m≥ .
則實數(shù)m得取值范圍為[ ,+∞)
【解析】(Ⅰ)設出等比數(shù)列{an}的首項和公比,由已知列式求得首項和公比,則數(shù)列{an}的通項公式可求;(Ⅱ)把(Ⅰ)中求得的通項公式代入bn=anlog2an , 利用錯位相減法求得Sn , 代入(n﹣1)2≤m(Sn﹣n﹣1),分離變量m,由單調性求得最值得答案.
【考點精析】本題主要考查了對數(shù)的運算性質和數(shù)列的前n項和的相關知識點,需要掌握①加法:②減法:③數(shù)乘:④⑤;數(shù)列{an}的前n項和sn與通項an的關系才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】福利彩票“雙色球”中紅球的號碼可以從01,02,03,…,32,33這33個二位號碼中選取,小明利用如圖所示的隨機數(shù)表選取紅色球的6個號碼,選取方法是從第1行第9列和第10列的數(shù)字開始從左到右依次選取兩個數(shù)字,則第四個被選中的紅色球號碼為( )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
A. 12 B. 33 C. 06 D. 16
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為 ,且過點D(2,0).
(1)求該橢圓的標準方程;
(2)設點 ,若P是橢圓上的動點,求線段PA的中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某住宅小區(qū)的平面圖呈圓心角為120°的扇形AOB,小區(qū)的兩個出入口設置在點A及點C處,且小區(qū)里有一條平行于BO的小路CD,已知某人從C沿CD走到D用了10分鐘,從D沿DA走到A用了6分鐘,若此人步行的速度為每分鐘50米,求該扇形的半徑OA的長(精確到1米)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓F1:(x+1)2+y2=16,定點F2(1,0),A是圓F1上的一動點,線段F2A的垂直平分線交半徑F1A于P點.
(1)求P點的軌跡C的方程;
(2)四邊形EFGH的四個頂點都在曲線C上,且對角線EG,FH過原點O,
若kEGkFH=-,求證:四邊形EFGH的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設定義域為(0,+∞)的單調函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一個解,且x0∈(a,a+1)(a∈N*),則實數(shù)a=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ax3+bx2+cx+d是實數(shù)集R上的偶函數(shù),并且f(x)<0的解為(﹣2,2),則 的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com