【題目】設(shè)定義域為(0,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一個解,且x0∈(a,a+1)(a∈N*),則實數(shù)a=

【答案】1
【解析】解:根據(jù)題意,對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,又由f(x)是定義在(0,+∞)上的單調(diào)函數(shù),
則f(x)﹣log2x為定值,
設(shè)t=f(x)﹣log2x,則f(x)=t+log2x,
又由f(t)=6,可得t+log2t=6,
可解得t=4,故f(x)=4+log2x,f′(x)= ,
又x0是方程f(x)﹣f′(x)=4的一個解,
所以x0是函數(shù)F(x)=f(x)﹣f′(x)﹣4=log2x﹣ 的零點,
分析易得F(1)=﹣ <0,F(xiàn)(2)=1﹣ =1﹣ >0,
故函數(shù)F(x)的零點介于(1,2)之間,故a=1,
所以答案是:1
【考點精析】通過靈活運用基本求導(dǎo)法則,掌握若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃銷售某種產(chǎn)品,現(xiàn)邀請生產(chǎn)該產(chǎn)品的甲、乙兩個廠家進(jìn)場試銷 天,兩個廠家提供的返利,方案如下:甲廠家每天固定返利元,且每賣出一件產(chǎn)品廠家再返利元,乙廠家無固定返利,賣出件以內(nèi)(含件)的產(chǎn)品,每件產(chǎn)品廠家返利元,超出件的部分每件返利元,分別記錄其天內(nèi)的銷售件數(shù),得到如下頻數(shù)表:

甲廠家銷售件數(shù)頻數(shù)表:

銷售件數(shù)

天數(shù)

乙廠家銷售件數(shù)頻數(shù)表:

銷售件數(shù)

天數(shù)

(1) 現(xiàn)從甲廠家試銷的天中抽取兩天,求一天銷售量大于而另一天銷售量小于的概率;

(2)若將頻率視作概率,回答以下問題:

①記乙廠家的日返利為 (單位:元),求的分布列和數(shù)學(xué)期望;

②商場擬在甲、乙兩個廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為商場作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2 , a4的等差中項. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=anlog2an , 其前n項和為Sn , 若(n﹣1)2≤m(Sn﹣n﹣1)對于n≥2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),則△ABC必是(
A.等腰三角形
B.直角三角形
C.等腰或直角三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點,點F為拋物線C1 的焦點,且拋物線C1上點M處的切線與圓C2 相切于點Q

)當(dāng)直線MQ的方程為時,求拋物線C1的方程;

)當(dāng)正數(shù)p變化時,記S1 ,S2分別為FMQ,FOQ的面積,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n∈N,f(x)=(1+x)m+(1+x)n
(1)當(dāng)m=n=5時,若 ,求a0+a2+a4的值;
(2)f(x)展開式中x的系數(shù)是9,當(dāng)m,n變化時,求x2系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=cos(x+φ)的圖象上每點的橫坐標(biāo)縮短為原來的 倍(縱坐標(biāo)不變),再將所得的圖象向左平移 個單位長度后得到的圖象關(guān)于坐標(biāo)原點對稱,則下列直線中是函數(shù)f(x)圖象的對稱軸的是(
A.x=﹣
B.x=
C.x=﹣
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+bx+c(b,c∈R),并設(shè) ,
(1)若F(x)圖像在x=0處的切線方程為x﹣y=0,求b、c的值;
(2)若函數(shù)F(x)是(﹣∞,+∞)上單調(diào)遞減,則 ①當(dāng)x≥0時,試判斷f(x)與(x+c)2的大小關(guān)系,并證明之;
②對滿足題設(shè)條件的任意b、c,不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某扇形的面積為4cm2 , 周長為8cm,則此扇形圓心角的弧度數(shù)是;若點(a,9)在函數(shù)y=3x的圖象上,則不等式 的解集為

查看答案和解析>>

同步練習(xí)冊答案