若某幾何體的三視圖(單位:cm)如右圖所示,則該幾何體的體積為      cm2
.

試題分析:由三視圖可知此幾何體是一個(gè)組合體,上方是一個(gè)圓錐,下方是一個(gè)圓柱,
所以
點(diǎn)評(píng):本小題用到的圓柱和圓錐公式為:.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)一個(gè)多面體的直觀圖和三視圖如圖所示,其中分別是、的中點(diǎn).
(1)求證:平面
(2)在線段上(含端點(diǎn))確定一點(diǎn),使得平面,并給出證明;
(3)一只小飛蟲(chóng)在幾何體內(nèi)自由飛,求它飛入幾何體內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)如圖,已知四棱錐底面為菱形,平面,分別是、的中點(diǎn).
(1)證明:
(2)設(shè), 若為線段上的動(dòng)點(diǎn),與平面所成的最大角的正切值為
,求此時(shí)異面直線AE和CH所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)
如圖一,平面四邊形關(guān)于直線對(duì)稱,。
沿折起(如圖二),使二面角的余弦值等于。對(duì)于圖二,

(Ⅰ)求;
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知一個(gè)棱長(zhǎng)為2的正方體,被一個(gè)平面截后所得幾何體的三視圖如下圖所示,則該幾何體的體積是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分為12分)
如圖所示:已知⊙O所在的平面,AB是⊙O的直徑,C是⊙O上任意一點(diǎn),過(guò)A作于E,求證:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在空間四邊形中,分別是的中點(diǎn)。若,且所成的角為,則四邊形的面積為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)如圖,有三個(gè)生活小區(qū)(均可看成點(diǎn))分別位于三點(diǎn)處,,到線段的距離,(參考數(shù)據(jù): ). 今計(jì)劃建一個(gè)生活垃圾中轉(zhuǎn)站,為方便運(yùn)輸,準(zhǔn)備建在線段(不含端點(diǎn))上.

(1)設(shè),試將到三個(gè)小區(qū)距離的最遠(yuǎn)者表示為的函數(shù),并求的最小值;
(2)設(shè),試將到三個(gè)小區(qū)的距離之和表示為的函數(shù),并確定當(dāng)取何值時(shí),可使最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在三棱柱中,已知平面ABC,,且此三棱柱的各頂點(diǎn)都在一個(gè)球面上,則球的體積為。.

查看答案和解析>>

同步練習(xí)冊(cè)答案