在三棱柱中,已知平面ABC,,且此三棱柱的各頂點都在一個球面上,則球的體積為。.

試題分析:取邊中點M,取邊中點N,連接MN,取MN中點O,

點評:本題的關鍵點在于確定球心的位置
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)求證:P-ABC為正四面體;
(2)棱PA上是否存在一點M,使得BM與面ABC所成的角為45°?若存在,求出點M的位置;若不存在,請說明理由。
(3)設棱臺DEF-ABC的體積為V=, 是否存在體積為V且各棱長均相等的平行六面體,使得它與棱臺DEF-ABC有相同的棱長和,并且該平行六面體的一條側棱與底面兩條棱所成的角均為60°? 若存在,請具體構造出這樣的一個平行六面體,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,在四棱錐中,平面平面,為等邊三角形,底面為菱形,,的中點,。
 
(1)求證:平面;
(2) 求四棱錐的體積
(3)在線段上是否存在點,使平面;  若存在,求出的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三棱錐的所有頂點都在球的球面上,是邊長為的正三角形,為球的直徑,且,則此棱錐的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若某幾何體的三視圖(單位:cm)如右圖所示,則該幾何體的體積為      cm2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某圓柱的底面直徑為高為則它最多能放入半徑為的球      個。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體的內切球,與各棱相切的球,外接球的體積之比為(     )
A.1:2:3B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,等邊與直角梯形垂直,,,
,.若分別為的中點.

(1)求的值; (2)求面與面所成的二面角大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如右圖所示,正三棱錐中,分別是 的中點,上任意一點,則直線所成的角的大小是(   )
A.B.
C.D.隨點的變化而變化。

查看答案和解析>>

同步練習冊答案