拋物線的頂點在原點,它的準線過雙曲線的一個焦點,并于雙曲線的實軸垂直,已知拋物線與雙曲線的交點為,求拋物線的方程和雙曲線的方程。

解:由題意可知,拋物線的焦點在x軸,又由于過點,所以可設其方程為    ∴=2 所以所求的拋物線方程為
所以所求雙曲線的一個焦點為(1,0),所以c=1,所以,設所求的雙曲線方程為   而點在雙曲線上,所以  解得 所以所求的雙曲線方程為

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設A1、A2是雙曲線的實軸兩個端點,P1P2是雙曲線的垂直于軸的弦,
(Ⅰ)直線A1P1與A2P2交點P的軌跡的方程;
(Ⅱ)過軸的交點Q作直線與(1)中軌跡交于M、N兩點,連接FN、FM,其中F,求證:為定值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓為正整數(shù),為常數(shù).曲線在點處的切線方程為.
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖2,建立平面直角坐標系軸在地平面上,軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)設在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問它的橫坐標不超過多少時,炮彈可以擊中它?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的方程為它的一個焦點與拋物線的焦點重合,離心率過橢圓的右焦點F作與坐標軸不垂直的直線交橢圓于A、B兩點.(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線中心在原點,焦點坐標是,并且雙曲線的離心率為。
(1)求雙曲線的方程;
(2)橢圓以雙曲線的焦點為頂點,頂點為焦點,求橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,且離心率且過橢圓右焦點的直線與橢圓C交于兩點.
(1)求橢圓C的方程;
(2)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.
(3)若AB是橢圓C經(jīng)過原點O的弦, MNAB,求證:為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知橢圓以坐標原點為中心,坐標軸為對稱軸,且該橢圓以拋物線的焦點為其一個焦點,以雙曲線的焦點為頂點。
(1)求橢圓的標準方程;
(2)已知點,且分別為橢圓的上頂點和右頂點,點是線段上的動點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜
率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.
(1)求橢圓C的標準方程;
(2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.

查看答案和解析>>

同步練習冊答案