【題目】足球,有“世界第一運動的美譽,是全球體育界最具影響力的單項體育運動之一.足球傳球是足球運動技術之一,是比賽中組織進攻、組織戰(zhàn)術配合和進行射門的主要手段.足球截球也是足球運動技術的一種,是將對方控制或傳出的球占為己有,或破壞對方對球的控制的技術,是比賽中由守轉攻的主要手段.這兩種運動技術都需要球運動員的正確判斷和選擇.現有甲、乙兩隊進行足球友誼賽,A、B兩名運動員是甲隊隊員,C是乙隊隊員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現A沿北偏西60°方向水平傳球,球速為10m/s,同時B沿北偏西30°方向以10m/s的速度前往接球,C同時也以10m/s的速度前去截球.假設球與B、C都在同一平面運動,且均保持勻速直線運動.
(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請說明理由.
(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請說明理由.
科目:高中數學 來源: 題型:
【題目】2019年某開發(fā)區(qū)一家汽車生產企業(yè)計劃引進一批新能源汽車制造設備,通過市場分析,全年需投入固定成本3000萬元,每生產x(百輛),需另投入成本萬元,且,由市場調研知,每輛車售價6萬元,且全年內生產的車輛當年能全部銷售完.
(1)求出2019年的利潤(萬元)關于年產量x(百輛)的函數關系式;(利潤=銷售額成本)
(2)2019年產量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校選派甲、乙、丙、丁、戊5名學生代表學校參加市級“演講”和“詩詞”比賽,下面是他們的一段對話.甲說:“乙參加‘演講’比賽”;乙說:“丙參加‘詩詞’比賽”;丙說“丁參加‘演講’比賽”;丁說:“戊參加‘詩詞’比賽”;戊說:“丁參加‘詩詞’比賽”.
已知這5個人中有2人參加“演講”比賽,有3人參加“詩詞”比賽,其中有2人說的不正確,且參加“演講”的2人中只有1人說的不正確.根據以上信息,可以確定參加“演講”比賽的學生是
A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】符號表示不大于的最大整數(),例如:
(1)已知,分別求兩方程的解集;
(2)設方程的解集為,集合,若,求的取值范圍.
(3)在(2)的條件下,集合,是否存在實數,,若存在,請求出實數的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知無窮數列,是公差分別為、的等差數列,記(),其中表示不超過的最大整數,即.
(1)直接寫出數列,的前4項,使得數列的前4項為:2,3,4,5;
(2)若,求數列的前項的和;
(3)求證:數列為等差數列的必要非充分條件是.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)求證: .
(2)某同學在一次研究性學習中發(fā)現,以下五個式子的值都等于同一個常數:
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①試從上述五個式子中選擇一個,求出這個常數;
②根據①的計算結果,將該同學的發(fā)現推廣為三角恒等式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校共有15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位:小時)
(1)應收集多少位女生樣本數據?
(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為:.估計該校學生每周平均體育運動時間超過4個小時的概率.
(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯表,并判斷是否有的把握認為“該校學生的每周平均體育運動時間與性別有關”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐P-ABC的四個頂點在球O的球面上,PA=PB=PC,△ABC是邊長為的正三角形,E,F分別是PA,AB的中點,∠CEF=90°.則球O的體積為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com