【題目】某市為了普及法律知識,增強市民的法制觀念,針對本市特定人群舉辦網(wǎng)上學法普法考試.為了解參考人群的法律知識水平,從一次普法考試中隨機抽取了50份答卷進行分析,得到這50份答卷成績的統(tǒng)計數(shù)據(jù)如下:

成績分組

頻數(shù)

2

5

12

16

10

5

(1)在答題卡的圖中作出樣本數(shù)據(jù)的頻率分布直方圖;

(2)試根據(jù)統(tǒng)計數(shù)據(jù),估計本次普法考試的平均成績和中位數(shù)( 同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)已知該市有100 萬人參加考試,得分低于60 分的需要重考(不低于60 分為合格,不再重考).若每次重考的合格率都比上一次考試低6 個百分點,試估計第3 次重考的人數(shù).

【答案】(1)見解析;(2)73.75;(3)0.728

【解析】試題分析:(1)先計算出每一組的頻率,再計算出,在圖中作出即可;(2)計算出中點值及相應(yīng)頻率,利用平均數(shù)公式計算出即可,中位數(shù)即為的解;(3)估計在初次考試后,需要重考的概率,第2次重考后,還需要重考的概率,故而可計算出結(jié)果.

試題解析:(1)頻率分布直方圖如圖所示

(2)樣本數(shù)據(jù)各組中點值及相應(yīng)的頻率如下:

各組中值

45

55

65

75

85

95

頻率

0.04

0.1

0.24

0.32

0.2

0.1

普法考試的平均成績;設(shè)樣本成績的中位數(shù)為,則易知,由,得,由此估計,本次普法考試成績的中位數(shù)為73.75.

(3)在初次考試后,得分低于60分的頻率為,由此估計在初次考試后,需要重考的概率,由題設(shè)知,第1次重考后,還需要重考的概率,第2次重考后,還需要重考的概率,所以,第3次重考的人數(shù)估計為(萬人)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某大學藝術(shù)專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1﹣DC﹣C1的大小為60°,則AD的長為(

A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C1 =1,(a>0,b>0)的焦距是實軸長的2倍,若拋物線C2:x2=2py,(p>0)的焦點到雙曲線C1的漸近線的距離為2,求拋物線C2的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合 A={x|2<x<4},B={a<x<3a}.
(1)若A∩B≠,求實數(shù)a的范圍.
(2)若A∪B={x|2<x<6},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD中,點E是AB的中點,點F是BC的中點,將△AED、△DCF分別沿DE、DF折起,使A、C兩點重合于點A′,連接EF,A′B.

(1)求證:A′D⊥EF;
(2)求二面角A′﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有5個不同的實數(shù)解x1 , x2 , x3 , x4 , x5 , h(x)=lg|x﹣4|,則h(x1+x2+x3+x4+x5)等于(
A.3
B.lg12
C.lg20
D.4lg2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè).

(1)令,求的單調(diào)區(qū)間;

(2)已知處取得極大值.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),函數(shù)

(1)當時,解關(guān)于的不等式: ;

(2)若,已知函數(shù)有兩個零點,若點, ,其中是坐標原點,證明: 不可能垂直.

查看答案和解析>>

同步練習冊答案