【題目】設(shè)函數(shù),a為實(shí)數(shù)

求函數(shù)的單調(diào)區(qū)間;

若存在實(shí)數(shù)a,使得對任意恒成立,求實(shí)數(shù)m的取值范圍.提示:

【答案】(1)單調(diào)遞減,單調(diào)遞增;(2)

【解析】

1)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)令,時(shí),不合題意,時(shí),利用導(dǎo)數(shù)求得,問題等價(jià)于恒成立,再利用導(dǎo)數(shù)求得的最大值即可得結(jié)果.

(1)

,得,

,得,

上單調(diào)遞減,在上單調(diào)遞增.

(2)令

,

若e-a≥0,可得h′(x)>0,函數(shù)h(x)為增函數(shù),當(dāng)x→+∞時(shí),h(x)→+∞,

不滿足h(x)≤0對任意x∈R恒成立;

若e-a<0,由h’(x)=0,得,則,

∴當(dāng)x∈時(shí),h′(x)>0,當(dāng)x∈時(shí),h′(x)<0,

若f(x)≤g(x)對任意x∈R恒成立, 則≤0(a>e)恒成立,

若存在實(shí)數(shù)a,使得≤0成立, 則ma≥,

(a>e),

令F(a), 則

∴當(dāng)a<2e時(shí),F(xiàn)′(a)<0,當(dāng)a>2e時(shí),F(xiàn)′(a)>0,

∴m. 則實(shí)數(shù)m的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列幾個命題:①若,則;②,則互為相反數(shù)的否命題;③的逆命題;④,則互為倒數(shù)的逆否命題. 其中真命題的序號__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地統(tǒng)計(jì)局調(diào)查了10000名居民的月收入,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖如圖所示。

(1)求居民月收入在[3000,3500)內(nèi)的頻率;

(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的月收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000中用分層抽樣的方法抽出100人做進(jìn)一步分析,則應(yīng)從月收入在[2500,3000)內(nèi)的居民中抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1an+1=,(nN*

1)求數(shù)列{an}的通項(xiàng)公式an,

2)若數(shù)列{bn}滿足bn=3n﹣1an,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(﹣1nλTn對一切nN*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在正三棱柱中,側(cè)棱長3H、G分別是AB,中點(diǎn).

1)證明:平面

2)若,求此三棱柱的側(cè)面積;

3)若P為側(cè)棱上一點(diǎn),且,與平面所成角大小為,求此三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y24x+30,過原點(diǎn)的直線l與圓C有公共點(diǎn).

1)求直線l斜率k的取值范圍;

2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P為圓C上的任意一點(diǎn),求線段OP的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年我國全面建成小康社會,其中小康生活的住房標(biāo)準(zhǔn)是城鎮(zhèn)人均住房建筑面積30平方米. 下表為2007年—2016年中,我區(qū)城鎮(zhèn)和農(nóng)村人均住房建筑面積統(tǒng)計(jì)數(shù)據(jù). 單位:平方米.

2007年

2008年

2009年

2010年

2011年

2012年

2013年

2014年

2015年

2016年

城鎮(zhèn)

18.66

20.25

22.79

25

27.1

28.3

31.6

32.9

34.6

36.6

農(nóng)村

23.3

24.8

26.5

27.9

30.7

32.4

34.1

37.1

41.4

45.8

(1)現(xiàn)從上述表格中隨機(jī)抽取一年數(shù)據(jù),試估計(jì)該年城鎮(zhèn)人均住房建筑面積達(dá)到小康生活住房標(biāo)準(zhǔn)的概率;

(2)現(xiàn)從上述表格中隨機(jī)抽取連續(xù)兩年數(shù)據(jù),求這兩年中城鎮(zhèn)人均住房建筑面積增長不少于2平方米的概率;

(3)將城鎮(zhèn)和農(nóng)村的人均住房建筑面積經(jīng)四舍五入取整后作為樣本數(shù)據(jù).記2012—2016年中城鎮(zhèn)人均住房面積的方差為,農(nóng)村人均住房面積的方差為 ,判斷的大小.(只需寫出結(jié)論).

(注:方差 ,其中 ,…… 的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是橢圓的一個頂點(diǎn),的短軸是圓的直徑,直線,過點(diǎn)P且互相垂直,交橢圓于另一點(diǎn)D,交圓A,B兩點(diǎn)

求橢圓的標(biāo)準(zhǔn)方程;

面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

(2)若交于兩點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.

查看答案和解析>>

同步練習(xí)冊答案