【題目】設(shè)函數(shù)f(x)=x2﹣3x
(1)若不等式f(x)≥m對任意x∈[0,1]恒成立,求實數(shù)的取值范圍;
(2)在(1)的條件下,當(dāng)m取最大值時,設(shè)x>0,y>0且2x+4y+m=0,求的最小值.
【答案】(1) m≤﹣2;(2) 3+2.
【解析】
(1)分析函數(shù)f(x)=x2﹣3x在[0,1]上的單調(diào)性,進而求出函數(shù)的最小值,可得實數(shù)m的取值范圍;
(2)由(1)得:m=﹣2,即x+2y=1,利用基本不等式,可得的最小值.
解:(1)函數(shù)f(x)=x2﹣3x的圖象是開口朝上,且以直線x為對稱軸的拋物線,
故函數(shù)f(x)=x2﹣3x在[0,1]上單調(diào)遞減,
當(dāng)x=1時,函數(shù)取最小值﹣2,
若不等式f(x)≥m對任意x∈[0,1]恒成立,
則m≤﹣2;
(2)由(1)得:m=﹣2,
即2x+4y=2,即x+2y=1
由x>0,y>0
故()(x+2y)=33+23+2
即的最小值為3+2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是正三角形,線段和都垂直于平面,設(shè),,且為的中點.
(1)求證:平面;
(2)求證:;
(3)求平面與平面所成的較小二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實欒城(今屬河北石家莊市)人,金元時期的數(shù)學(xué)家、詩人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)( )
A. 10步,50步 B. 20步,60步 C. 30步,70步 D. 40步,80步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為常數(shù)).
(1)若函數(shù)與函數(shù)在處有相同的切線,求實數(shù)的值;
(2)若,且,證明: ;
(3)若對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(實數(shù)為常數(shù))
(1)當(dāng)時,證明在上單調(diào)遞減;
(2)若,且為偶函數(shù),求實數(shù)的值;
(3)小金同學(xué)在求解函數(shù)的對稱中心時,發(fā)現(xiàn)函數(shù)是一個復(fù)合函數(shù),設(shè),,則,顯然有對稱中心,設(shè)為,有反函數(shù),則的對稱中心為,請問小金的做法是否正確?如果正確,請給出證明,并直接寫出當(dāng)時的對稱中心;如果錯誤,請舉出反例,并用正確的方法直接寫出當(dāng)時的對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬;將四個面都為直角三角形的三棱錐稱之為鱉臑。若三棱錐P-ABC為鱉臑,PA⊥面ABC,PA=AB=2,AC=4,三棱錐P-ABC的四個頂點都在球的球面上,則球0的表面積為( )
A. 8πB. 12πC. 20πD. 24π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題P:不等式的解集中的整數(shù)有且僅有-1,0,1.求a的取值范圍.
命題Q:集合且.
(1)分別求命題P、Q為真命題時的實數(shù)a的取值范圍;
(2)當(dāng)實數(shù)a取何值時,命題P、Q中有且僅有一個為真命題;
(3)設(shè)P、Q皆為真時a的取值范圍為集合S,,若全集,,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中,表示同一個函數(shù)的是( ).
A.y=x+1和y=B.y=x0和y=C.f(x)=(x-1)2和g(x)=(x+1)2D.f(x)=和g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題10分) 從3名男生和名女生中任選2人參加比賽。
①求所選2人都是男生的概率;
②求所選2人恰有1名女生的概率;
③求所選2人中至少有1名女生的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com