【題目】下列結(jié)論正確的是( )
A.在中,若,則
B.在銳角三角形中,不等式恒成立
C.在中,若,,則為等腰直角三角形
D.在中,若,,三角形面積,則三角形外接圓半徑為
【答案】ABC
【解析】
對選項(xiàng)A,利用三角形“大角對長邊”和正弦定理即可判斷A正確;對選項(xiàng)B,利用余弦定理,即可判斷B正確,對選項(xiàng)C,首先根據(jù)余弦定理得到,利用正弦定理邊化角公式得到,再化簡即可判斷選項(xiàng)C正確.對選項(xiàng)D,首先利用面積公式得到,利用余弦定理得到,再利用正弦定理即可判斷D錯(cuò)誤.
對選項(xiàng)A,在中,由,
故A正確.
對選項(xiàng)B,若,則,
又因?yàn)?/span>,所以為銳角,符合為銳角三角形,故B正確.
對選項(xiàng)C,,整理得:.
因?yàn)?/span>,所以,即.
所以,即,
,
即,又,所以.
故,則為等腰直角三角形,故C正確.
對選項(xiàng)D,,解得.
,
所以.
又因?yàn)?/span>,,故D錯(cuò)誤.
故選:ABC
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f '(x)的圖象如圖所示,f(-1)=f(2)=3,令g(x)=(x-1)f(x),則不等式g(x)≥3x-3的解集是( )
A. [-1,1]∪[2,+∞)B. (-∞,-1]∪[1,2]
C. (-∞,-1]∪[2,+∞)D. [-1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年寒假期間新冠肺炎肆虐,全國人民眾志成城抗疫情.某市要求全體市民在家隔離,同時(shí)決定全市所有學(xué)校推遲開學(xué).某區(qū)教育局為了讓學(xué)生“停課不停學(xué)”,要求學(xué)校各科老師每天在網(wǎng)上授課輔導(dǎo),每天共200分鐘.教育局為了了解高三學(xué)生網(wǎng)上學(xué)習(xí)情況,上課幾天后在全區(qū)高三學(xué)生中采取隨機(jī)抽樣的方法抽取了80名學(xué)生(其中男女生恰好各占一半)進(jìn)行問卷調(diào)查,按男女生分為兩組,再將每組學(xué)生在線學(xué)習(xí)時(shí)間(分鐘)分為5組,,,,得到如圖所示的頻率分布直方圖.全區(qū)高三學(xué)生有3000人(男女生人數(shù)大致相等),以頻率估計(jì)概率回答下列問題:
(1)估計(jì)全區(qū)高三學(xué)生中網(wǎng)上學(xué)習(xí)時(shí)間不超過40分鐘的人數(shù);
(2)在調(diào)查的80名高三學(xué)生且學(xué)習(xí)時(shí)間不超過40分鐘的學(xué)生中,男女生按分層抽樣的方法抽取6人.若從這6人中隨機(jī)抽取2人進(jìn)行電話訪談,求至少抽到1名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年第24屆冬奧會將在北京舉行。為了推動我國冰雪運(yùn)動的發(fā)展,京西某區(qū)興建了“騰越”冰雪運(yùn)動基地。通過對來“騰越”參加冰雪運(yùn)動的100員運(yùn)動員隨機(jī)抽樣調(diào)查,他們的身份分布如下: 注:將表中頻率視為概率。
身份 | 小學(xué)生 | 初中生 | 高中生 | 大學(xué)生 | 職工 | 合計(jì) |
人數(shù) | 40 | 20 | 10 | 20 | 10 | 100 |
對10名高中生又進(jìn)行了詳細(xì)分類如下表:
年級 | 高一 | 高二 | 高三 | 合計(jì) |
人數(shù) | 4 | 4 | 2 | 10 |
(1)求來“騰越”參加冰雪運(yùn)動的人員中高中生的概率;
(2)根據(jù)統(tǒng)計(jì),春節(jié)當(dāng)天來“騰越”參加冰雪運(yùn)動的人員中,小學(xué)生是340人,估計(jì)高中生是多少人?
(3)在上表10名高中生中,從高二,高三6名學(xué)生中隨機(jī)選出2人進(jìn)行情況調(diào)查,至少有一名高三學(xué)生的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長為a,點(diǎn)E,F,G分別為棱AB,AA1,C1D1的中點(diǎn).下列結(jié)論中,正確結(jié)論的序號是______.
①過E,F,G三點(diǎn)作正方體的截面,所得截面為正六邊形;
②B1D1∥平面EFG;
③BD1⊥平面ACB1;
④異面直線EF與BD1所成角的正切值為;
⑤四面體ACB1D1的體積等于a3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列說法正確的是( )
A.若是函數(shù)的零點(diǎn),則是的整數(shù)倍
B.函數(shù)的圖象關(guān)于點(diǎn)對稱
C.函數(shù)的圖象與函數(shù)的圖象相同
D.函數(shù)的圖象可由的圖象先向上平移個(gè)單位長度,再向左平移個(gè)單位長度得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,,,,是的中點(diǎn),是棱上的點(diǎn),且.
(Ⅰ)求證:平面底面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直三棱柱中,是邊長為2等邊三角形,是的中點(diǎn).
(1)求證:平面;
(2)若與平面所成角為,求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com