【題目】我國古代典籍《周易》用“卦”描述萬物的變化,每一卦由六爻組成.其中有一種起卦方法稱為“金錢起卦法”,其做法為:取三枚相同的錢幣合于雙手中,上下?lián)u動數(shù)下使錢幣翻滾摩擦,再隨意拋撒錢幣到桌面或平盤等硬物上,如此重復(fù)六次,得到六爻.若三枚錢幣全部正面向上或全部反面向上,就稱為變爻.若每一枚錢幣正面向上的概率為,則一卦中恰有兩個變爻的概率為( )
A.B.C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線的極坐標(biāo)方程為.以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為,(為參數(shù)).
(1)請寫出直線的參數(shù)方程;
(2)求直線與曲線交點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.
表1:甲套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 4 | 19 | 20 | 5 | 1 |
圖1:乙套設(shè)備的樣本的頻率分布直方圖
(1)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);
甲套設(shè)備 | 乙套設(shè)備 | 合計 | |||||||||||||
合格品 | |||||||||||||||
不合格品 | |||||||||||||||
合計 | ,求的期望. |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的左頂點為A,離心率為,點在橢圓C上.
(1)求橢圓C的方程;
(2)若直線()與橢圓C交于E,F兩點,直線,分別與y軸交于點M,N,求證:在x軸上存在點P,使得無論非零實數(shù)k怎樣變化,以為直徑的圓都必過點P,并求出點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列,,的前項和分別為,,,且對任意的都有,已知,數(shù)列和是公差不為0的等差數(shù)列,且各項均為非負(fù)整數(shù).
(1)求證:數(shù)列是等差數(shù)列;
(2)若數(shù)列的前4項刪去1項后按原來順序成等比數(shù)列,求所有滿足條件的數(shù)列;
(3)若,且,,求數(shù)列,的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)氣象部門預(yù)報,在距離某個碼頭A南偏東45°方向的600km處的熱帶風(fēng)暴中心B正以30km/h的速度向正北方向移動,距離風(fēng)暴中心450km以內(nèi)的地區(qū)都將受到影響,從現(xiàn)在起經(jīng)過___小時后該碼頭A將受到熱帶風(fēng)暴的影響(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,,,是橢圓上三個不同的點,F為其右焦點,且,,成等差數(shù)列
(1)求橢圓的方程;
(2)求的值;
(3)若線段AC的垂直平分線與x軸交點為D,求直線BD的斜率k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.若等比數(shù)列的前項和為,則,,也成等比數(shù)列.
B.命題“若為的極值點,則”的逆命題是真命題.
C.“為真命題”是“為真命題”的充分不必要條件.
D.命題“,使得”的否定是:“,”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱柱ABCD﹣A1B1C1D1中,∠BAD=∠BCD=90°,∠ADC=60°且AD=CD,BB1⊥平面ABCD,BB1=2AB=2.
(1)證明:AC⊥B1D.
(2)求BC1與平面B1C1D所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com