【題目】已知點(diǎn)在橢圓上,過點(diǎn)作軸于點(diǎn)
(1)求線段的中點(diǎn)的軌跡的方程
(2)設(shè)、兩點(diǎn)在(1)中軌跡上,點(diǎn),兩直線與的斜率之積為,且(1)中軌跡上存在點(diǎn)滿足,當(dāng)面積最小時,求直線的方程.
【答案】(1);(2)
【解析】
(1)設(shè)線段的中點(diǎn)為,得出點(diǎn)的坐標(biāo)為,然后代入橢圓方程并化簡后得出所求軌跡方程;
(2)設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與橢圓聯(lián)立,消去,并列出韋達(dá)定理,利用直線和的斜率之積得出,可得出,由知,于是得出直線的方程為,將該直線與橢圓方程聯(lián)立并結(jié)合兩點(diǎn)間的距離公式得出,最后利用三角形的面積公式以及基本不等式求出面積的最小值,利用基本不等式等號成立的條件求出的值,即可求出直線的方程。
(1)設(shè)線段的中點(diǎn)為,則,,
即;
(2)設(shè)直線,,,,,
聯(lián)立,得.
,.
,
得到.
則為,解得,同理.
,
.
當(dāng),即時,有最小值為.
此時直線的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線,過拋物線上點(diǎn)B作切線交y軸于點(diǎn)
(Ⅰ)求拋物線方程和切點(diǎn)的坐標(biāo);
(Ⅱ)過點(diǎn)作拋物線的割線,在第一象限內(nèi)的交點(diǎn)記為,,設(shè)為y軸上一點(diǎn),滿足,為中點(diǎn),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程是:
(1)求曲線的普通方程和直線的直角坐標(biāo)方程.
(2)點(diǎn)是曲線上的動點(diǎn),求點(diǎn)到直線距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計(jì)該公司對每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費(fèi)用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計(jì)算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程及的直角坐標(biāo)方程;
(2)若曲線與曲線分別交于點(diǎn),,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實(shí)常數(shù),函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)設(shè),不等式的解集為,不等式的解集為,當(dāng)時,是否存在正整數(shù),使得或成立.若存在,試找出所有的m;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)若,求直線以及曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝在所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項(xiàng)展開式的系數(shù)規(guī)律,現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,記作數(shù)列,若數(shù)列的前項(xiàng)和為,則_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)恰有兩個零點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com