【題目】已知直線過橢圓的右焦點(diǎn),拋物線的焦點(diǎn)為橢圓的上頂點(diǎn),且交橢圓于兩點(diǎn),點(diǎn)在直線上的射影依次為.
(1)求橢圓的方程;
(2)若直線交軸于點(diǎn),且,當(dāng)變化時(shí),證明: 為定值;
(3)當(dāng)變化時(shí),直線與是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說明理由.
【答案】(1);(2)見解析;(3).
【解析】試題分析:(1)由題設(shè)條件求出橢圓的右焦點(diǎn)與上頂點(diǎn)坐標(biāo),即可得出、的值,再求出的值即可求得橢圓的方程;(2)設(shè),聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理得出與,再根據(jù)及,從而可表示出,化簡(jiǎn)即可得證;(3))當(dāng)時(shí),易得與相交于點(diǎn),可猜想: 變化時(shí), 與相交于點(diǎn),再證明猜想成立即可.
試題解析:(1)∵過橢圓的右焦點(diǎn),
∴右焦點(diǎn),即,
又∵的焦點(diǎn)為橢圓的上頂點(diǎn),
∴,即,
∴橢圓的方程;
(2)由得, ,
設(shè),則,
∵,
∴,
∴,
∴,
綜上所述,當(dāng)變化時(shí), 的值為定值;
(3)當(dāng)時(shí),直線軸,則為矩形,易知與是相交于點(diǎn),猜想與相交于點(diǎn),證明如下:
∵,
∵,
∴,即三點(diǎn)共線.
同理可得三點(diǎn)共線,
則猜想成立,即當(dāng)變化時(shí), 與相交于定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則函數(shù) 的零點(diǎn)個(gè)數(shù)為( )
A. 8 B. 7 C. 6 D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為ρ2=.
(1)若以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程;
(2)若P(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),求3x+4y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.
(1)為中點(diǎn),在線段上是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)在橢圓上,且.
(1)求橢圓的方程;
(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(I)求的解析式及單調(diào)遞減區(qū)間;
(II)若存在 ,使函數(shù)成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過拋物線與坐標(biāo)軸的三個(gè)交點(diǎn).
(1)求圓的方程;
(2)經(jīng)過點(diǎn)的直線與圓相交于,兩點(diǎn),若圓在,兩點(diǎn)處的切線互相垂直,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合是集合 的一個(gè)含有個(gè)元素的子集.
(Ⅰ)當(dāng)時(shí),
設(shè)
(i)寫出方程的解;
(ii)若方程至少有三組不同的解,寫出的所有可能取值.
(Ⅱ)證明:對(duì)任意一個(gè),存在正整數(shù)使得方程 至少有三組不同的解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com