【題目】已知函數(shù).

1)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實數(shù)的取值范圍;

2)若方程有唯一解,求實數(shù)的值.

【答案】1;(2

【解析】試題分析:(1)由已知中函數(shù)fx=x2-8lnx,gx=-x2+14x的解析式,我們易求出他們導函數(shù)的解析式,進而求出導函數(shù)大于0的區(qū)間,構造關于a的不等式,即可得到實數(shù)a的取值范圍;(2)若方程fx=gx+m有唯一解,則函數(shù)hx=fx-gx=2x2-8lnx-14xy=m的圖象有且只有一個交點,求出h'x)后,易求出函數(shù)的最值,分析函數(shù)的性質(zhì)后,即可得到滿足條件的實數(shù)m的值.

試題解析:(1)因為 ,

故當時, ,當時, ,

要使上遞增,必須,

因為

要使上遞增,必須,即

由上得出,當時, 上均為增函數(shù).

2)方程有唯一解有唯一解,

,

所以

變化如下表:



4



-

0

+


遞減

極小值

遞增

由于在上, 只有一個極小值,所以的最小值為,故當時,方程有唯一解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某水產(chǎn)養(yǎng)殖戶制作一體積為立方米的養(yǎng)殖網(wǎng)箱(無蓋),網(wǎng)箱內(nèi)部被隔成體積相等的三塊長方體區(qū)域(如圖),網(wǎng)箱.上底面的一邊長為米,網(wǎng)箱的四周與隔欄的制作價格是元/平方米,網(wǎng)箱底部的制作價格為元/平方米.設網(wǎng)箱上底面的另一邊長為米,網(wǎng)箱的制作總費用為元.

(1)求出之間的函數(shù)關系,并指出定義域;

(2)當網(wǎng)箱上底面的另一邊長為多少米時,制作網(wǎng)箱的總費用最少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1的方程為3x+4y﹣12=0.

(1)若直線l2與l1平行,且過點(﹣1,3),求直線l2的方程;

(2)若直線l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點與點都在橢圓上.

(1)求橢圓的方程;

(2)若的左焦點、左頂點分別為,則是否存在過點且不與軸重合的直線 (記直線與橢圓的交點為),使得點在以線段為直徑的圓上;若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=Asin(ωxφ)(A≠0,ω>0,φ<)的圖象關于直線對稱,它的最小正周期為π,則(   )

A. f(x)的圖象過點(0,) B. f(x)上是減函數(shù)

C. f(x)的一個對稱中心是 D. f(x)的一個對稱中心是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點,如圖 2.

(1)求證: 平面;

(2)求證: 平面;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,若,成等差數(shù)列,且三個內(nèi)角,也成等差數(shù)列,則的形狀為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M: 及其上一點A2,4

1)設圓Nx軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;

2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;

3)設點Tt,o)滿足:存在圓M上的兩點PQ,使得,求實數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(2,0),B(0,2),,O為坐標原點.

(1),求sin 2θ的值;

(2)若,且θ∈(-π,0),求的夾角.

查看答案和解析>>

同步練習冊答案