【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點(diǎn),如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求點(diǎn)到平面的距離.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).
【解析】試題分析:(1)在平面內(nèi)找到與直線(xiàn)平行的直線(xiàn),通過(guò)三角形的中位線(xiàn)證明直線(xiàn)AB與直線(xiàn)MN平行且相等,從而證明,可證得直線(xiàn)平面.
(2)通過(guò)證明直線(xiàn)BC垂直于平面BDE內(nèi)的兩條相交直線(xiàn)BD,ED可證得直線(xiàn)平面.
(3)利用等體積法,可求得點(diǎn)D 到平面BEC的距離.
試題解析: (1)證明:取中點(diǎn),連結(jié).
在中, 分別為的中點(diǎn),
所以,且.
由已知,
所以四邊形為平行四邊形.
所以.
又因?yàn)?/span>平面,且平面,
所以平面.
(2)證明:在正方形中, ,
又因?yàn)槠矫?/span>平面,且平面平面,
所以平面.
所以
在直角梯形中, ,可得.
在中, .
所以.
所以平面.
(3)由(2)知,
所以,又因?yàn)?/span>平面
又.
所以, 到面的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓: (),設(shè)為圓與軸負(fù)半軸的交點(diǎn),過(guò)點(diǎn)作圓的弦,并使弦的中點(diǎn)恰好落在軸上.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)延長(zhǎng)交曲線(xiàn)于點(diǎn),曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)交于點(diǎn),試判斷以點(diǎn)為圓心,線(xiàn)段長(zhǎng)為半徑的圓與直線(xiàn)的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列的前項(xiàng)和為, 已知,且, , 三個(gè)數(shù)依次成等差數(shù)列.
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)若數(shù)列滿(mǎn)足,設(shè)是其前項(xiàng)和,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求滿(mǎn)足下列條件的直線(xiàn)的方程:
(1)經(jīng)過(guò)兩條直線(xiàn)2x﹣3y+10=0和3x+4y﹣2=0的交點(diǎn),且垂直于直線(xiàn)3x﹣2y+4=0;
(2)經(jīng)過(guò)兩條直線(xiàn)2x+y﹣8=0和x﹣2y+1=0的交點(diǎn),且平行于直線(xiàn)4x﹣3y﹣7=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若任意,不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)求證:對(duì)任意, ,都有成立;
(3)對(duì)于給定的正數(shù),有一個(gè)最大的正數(shù),使得整個(gè)區(qū)間上,不等式恒成立,求出的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為,直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),過(guò)這兩點(diǎn)分別作拋物線(xiàn)的切線(xiàn),且這兩條切線(xiàn)相交于點(diǎn).
(1)若的坐標(biāo)為,求的值;
(2)設(shè)線(xiàn)段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過(guò)的直線(xiàn)與線(xiàn)段為直徑的圓相切,切點(diǎn)為,且直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)關(guān)于直線(xiàn)對(duì)稱(chēng)的直線(xiàn)為,直線(xiàn)與橢圓分別交于點(diǎn)、和、,記直線(xiàn)的斜率為.
(Ⅰ)求的值;
(Ⅱ)當(dāng)變化時(shí),試問(wèn)直線(xiàn)是否恒過(guò)定點(diǎn)? 若恒過(guò)定點(diǎn),求出該定點(diǎn)坐標(biāo);若不恒過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時(shí),函數(shù)f(x)的解析式為 .
(1)求當(dāng)x<0時(shí)函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(0,+∞)上的是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,E,F(xiàn),G分別是DD1 , AB,CC1的中點(diǎn),則異面直線(xiàn)A1E與GF所成角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com