精英家教網 > 高中數學 > 題目詳情

【題目】浙江省現(xiàn)行的高考招生制度規(guī)定除語、數、英之外,考生須從政治、歷史、地理、物理、化學、生物、技術這7門高中學考科目中選擇3門作為高考選考科目,成績計入高考總分.已知報考某高校、兩個專業(yè)各需要一門科目滿足要求即可,專業(yè):物理、化學、技術;專業(yè):歷史、地理、技術.考生小李今年打算報考該高校這兩個專業(yè)的選考方式有______ 種.(用數字作答)

【答案】27;

【解析】

根據題意,分四種情況討論即可,最終將每種情況的個數加到一起.

根據題意得到分情況:當考生選擇技術時,兩個專業(yè)均可報考,再從剩下的6門課中選擇兩科即可,方法有種;當學生不選技術時,可以從物理化學中選擇一科,再從歷史,地理選一科,最后從政治生物中選擇一科,有種方法;當學生同時選物理化學時,還需要選擇歷史,地理中的一科,有2中選擇,當學生同時選擇歷史,地理時,需要從物理化學中再選擇一科,也有2種方法,共有4種;最終加到一起共有:15+8+4=27.

故答案為:27.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某種產品的質量按照其質量指標值M進行等級劃分,具體如下表:

質量指標值M

等級

三等品

二等品

一等品

現(xiàn)從某企業(yè)生產的這種產品中隨機抽取了100件作為樣本,對其質量指標值M進行統(tǒng)計分析,得到如圖所示的頻率分布直方圖.

(1)記A表示事件“一件這種產品為二等品或一等品”,試估計事件A的概率;

(2)已知該企業(yè)的這種產品每件一等品、二等品、三等品的利潤分別為10元、6元、2元,試估計該企業(yè)銷售10000件該產品的利潤;

(3)根據該產品質量指標值M的頻率分布直方圖,求質量指標值M的中位數的估計值(精確到0.01)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數具備以下兩個條件:(1)至少有一條對稱軸或一個對稱中心;(2)至少有兩個零點,則稱這樣的函數為“多元素”函數,下列函數中為“多元素”函數的是_______.

;②;③;④.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角梯形PBCD中, ,APD的中點,如下左圖。將沿AB折到的位置,使,點ESD上,且,如下圖。

1)求證: 平面ABCD;

2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在印度有一個古老的傳說:舍罕王打算獎賞國際象棋的發(fā)明人一宰相西薩·班·達依爾.國王問他想要什么,他對國王說:“陛下,請您在這張棋盤的第1個小格里,賞給我1粒麥子,在第2個小格里給2粒,第3小格給4粒,以后每1小格都比前1小格加1倍.請您把這樣擺滿棋盤上所有的64格的麥粒,都賞給您的仆人吧!”國王覺得這要求太容易滿足了,就同意給他這些麥粒.當人們把一袋一袋的麥子搬來開始計數時,國王才發(fā)現(xiàn)就是把全印度甚至全世界的麥粒全拿來,也滿足不了那位宰相的要求.那么,宰相要求得到的麥粒到底有多少粒?如圖所示的程序框圖是為了計算上面這個問題而設計的,那么在“”和“”中,可以先后填入(

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某科研團隊對某一生物生長規(guī)律進行研究,發(fā)現(xiàn)其生長蔓延的速度越來越快.開始在某水域投放一定面積的該生物,經過2個月其覆蓋面積為18平方米,經過3個月其覆蓋面積達到27平方米.該生物覆蓋面積(單位:平方米)與經過時間個月的關系有兩個函數模型可供選擇.

1)試判斷哪個函數模型更合適,并求出該模型的函數解析式;

2)問約經過幾個月,該水域中此生物的面積是當初投放的1000(參考數據:)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在邊長為2的正方形中,分別為,的中點,的中點,沿,,將正方形折起,使,,重合于點,在構成的四面體中,下列結論中錯誤的是( )

A. 平面

B. 直線與平面所成角的正切值為

C. 異面直線和求所成角為

D. 四面體的外接球表面積為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年2月13日《煙臺市全民閱讀促進條例》全文發(fā)布,旨在保障全民閱讀權利,培養(yǎng)全民閱讀習慣,提高全民閱讀能力,推動文明城市和文化強市建設.某高校為了解條例發(fā)布以來全校學生的閱讀情況,隨機調查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.

(1)求這200名學生每周閱讀時間的樣本平均數和樣本方差(同一組中的數據用該組區(qū)間的中間值代表);

(2)由直方圖可以認為,目前該校學生每周的閱讀時間服從正態(tài)分布,其中近似為樣本平均數近似為樣本方差

(i)一般正態(tài)分布的概率都可以轉化為標準正態(tài)分布的概率進行計算:若,令,則,且.利用直方圖得到的正態(tài)分布,求

(ii)從該高校的學生中隨機抽取20名,記表示這20名學生中每周閱讀時間超過10小時的人數,求(結果精確到0.0001)以及的數學期望.

參考數據:,.若,則.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有_______

查看答案和解析>>

同步練習冊答案