【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有_______

【答案】1008

【解析】分析本題的要求比較多,有三個(gè)限制條件,甲、乙排在相鄰兩天可以把甲和乙看做一個(gè)元素,注意兩元之間有一個(gè)排列,丙不排在初一,丁不排在初七,則可以甲乙排初一、初二和初六、初七,丙排初七和不排初七,根據(jù)分類原理得到結(jié)果.

詳解分兩類

第一類:甲乙相鄰排初一初二或初六、初七,這時(shí)先安排甲和乙,有然后排丙或丁,有種,剩下的四人全排有種,因此共有種方法;

第二類:甲乙相鄰排中間,有當(dāng)丙排在初七,則剩下的四人有種排法,若丙排在中間,則甲有種,初七就從剩下的三人中選一個(gè),有剩下三人有,所以共有

故共有種安排方案,故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正四棱柱ABCD﹣A1B1C1D1中,AB= ,AA1=2,設(shè)四棱柱的外接球的球心為O,動(dòng)點(diǎn)P在正方形ABCD的邊上,射線OP交球O的表面于點(diǎn)M,現(xiàn)點(diǎn)P從點(diǎn)A出發(fā),沿著A→B→C→D→A運(yùn)動(dòng)一次,則點(diǎn)M經(jīng)過(guò)的路徑長(zhǎng)為(
A.
B.2 π
C.
D.4 π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且4Sn=(an+1)2(n∈N+). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列{ }的前n項(xiàng)和,證明: ≤Tn<1(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,若 且sinC=cosA (Ⅰ)求角A、B、C的大;
(Ⅱ)函數(shù)f(x)=sin(2x+A)+cos(2x﹣ ),求函數(shù)f(x)單調(diào)遞增區(qū)間,指出它相鄰兩對(duì)稱軸間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= x2+ax﹣lnx(a∈R). (Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>1時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對(duì)任意a∈(3,4)及任意x1 , x2∈[1,2],恒有 m+ln2>|f(x1)﹣f(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )(x∈R),下面結(jié)論錯(cuò)誤的是(
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)是偶函數(shù)
C.函數(shù)f(x)的圖象關(guān)于直線 對(duì)稱
D.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1的左焦點(diǎn)F1的坐標(biāo)為(﹣ ,0),F(xiàn)2是它的右焦點(diǎn),點(diǎn)M是橢圓C上一點(diǎn),△MF1F2的周長(zhǎng)等于4+2
(1)求橢圓C的方程;
(2)過(guò)定點(diǎn)P(0,2)作直線l與橢圓C交于不同的兩點(diǎn)A,B,且OA⊥OB(其中O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ﹣k( +lnx)(k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)). (Ⅰ)當(dāng)k≤0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案