已知
為定義在
上的可導(dǎo)函數(shù),
對(duì)于
恒成立,且
為自然對(duì)數(shù)的底數(shù),則( )
試題分析:函數(shù)
為定義在
上的可導(dǎo)函數(shù),滿足
,則函數(shù)為指數(shù)函數(shù),可設(shè)函數(shù)
,則導(dǎo)函數(shù)
,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023502073635.png" style="vertical-align:middle;" />,所以
,
在
上為減函數(shù),
,即
,從而得
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
的導(dǎo)數(shù)為
,若函數(shù)
的圖象關(guān)于直線
對(duì)稱,且函數(shù)
在
處取得極值.
(I)求實(shí)數(shù)
的值;
(II)求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
,函數(shù)
.
(1)若
,求函數(shù)
的極值與單調(diào)區(qū)間;
(2)若函數(shù)
的圖象在
處的切線與直線
平行,求
的值;
(3)若函數(shù)
的圖象與直線
有三個(gè)公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
。
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)求證:當(dāng)
時(shí),對(duì)所有的
都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)設(shè)
,試討論
單調(diào)性;
(2)設(shè)
,當(dāng)
時(shí),若
,存在
,使
,求實(shí)數(shù)
的
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(I)若
在
處取得極值,
①求
、
的值;②存在
,使得不等式
成立,求
的最小值;
(II)當(dāng)
時(shí),若
在
上是單調(diào)函數(shù),求
的取值范圍.(參考數(shù)據(jù)
)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知某生產(chǎn)廠家的年利潤(rùn)
(單位:萬元)與年產(chǎn)量
(單位:萬件)的函數(shù)關(guān)系式為
,則使該生產(chǎn)廠家獲得最大年利潤(rùn)的年產(chǎn)量為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若函數(shù)
在
上單調(diào)遞增,那么實(shí)數(shù)
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若函數(shù)
對(duì)任意的
恒成立,則
___________.
查看答案和解析>>