已知函數(shù)
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)求證:當時,對所有的都有成立.
(1)當時,的減區(qū)間為,無增區(qū)間;
(2)通過求導數(shù),,
,得到
均為單調(diào)減函數(shù).
討論得證.

試題分析:(1)根據(jù)
確定的減區(qū)間為,無增區(qū)間;
(2)通過求導數(shù),
,得到
均為單調(diào)減函數(shù).
討論得證.
試題解析:(1)當時,

的減區(qū)間為,無增區(qū)間;
(2)證明:
因為,,所以,
均為單調(diào)減函數(shù).
時,,而
時,,而;
綜上知,當時,對所有的都有成立.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)試討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若上是增函數(shù),求實數(shù)的取值范圍.
(Ⅱ)若的一個極值點,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),
⑴求證函數(shù)上的單調(diào)遞增;
⑵函數(shù)有三個零點,求的值;
⑶對恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)
(Ⅰ)若時,求的單調(diào)區(qū)間;
(Ⅱ)時,有極值,且對任意時,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為實數(shù),函數(shù)
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當時,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)存在極值,則實數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為定義在上的可導函數(shù),對于恒成立,且為自然對數(shù)的底數(shù),則(    )
A.
B.
C.
D.的大小不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(2,f(2))處的切線的傾斜角為,對于任意的,函數(shù) 的導函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;  
(Ⅲ)求證:

查看答案和解析>>

同步練習冊答案