為實數(shù),函數(shù)
(Ⅰ)求的單調區(qū)間與極值;
(Ⅱ)求證:當時,
(Ⅰ)的單調遞減區(qū)間是,單調遞增區(qū)間是,極小值為;(Ⅱ) 見解析.

試題分析:(Ⅰ)直接根據(jù)導數(shù)和零的大小關系求得單調區(qū)間,并由單調性求得極值;(Ⅱ)先由導數(shù)判斷出在R內單調遞增,說明對任意,都有,而,從而得證.
試題解析:(1)解:由知,
,得.于是,當變化時,的變化情況如下表:






0
+

單調遞減

單調遞增
的單調遞減區(qū)間是,單調遞增區(qū)間是處取得極小值,極小值為.                 
(2)證明:設,于是
由(1)知,對任意,都有,所以在R內單調遞增.
于是,當時,對任意,都有,而,
從而對任意,都有,即
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

的導數(shù)為,若函數(shù)的圖象關于直線對稱,且函數(shù)處取得極值.
(I)求實數(shù)的值;
(II)求函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)。
(1)當時,求函數(shù)的單調區(qū)間;
(2)求證:當時,對所有的都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)設,試討論單調性;
(2)設,當時,若,存在,使,求實數(shù)
取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若,求的極大值;
(Ⅱ)若在定義域內單調遞減,求滿足此條件的實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(Ⅰ)求的單調遞增區(qū)間;
(Ⅱ)若函數(shù)上只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(I)若處取得極值,
①求、的值;②存在,使得不等式成立,求的最小值;
(II)當時,若上是單調函數(shù),求的取值范圍.(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

定義:若存在常數(shù),使得對定義域內的任意兩個,均有 成立,則稱函數(shù)在定義域上滿足利普希茨條件.若函數(shù)滿足利普希茨條件,則常數(shù)的最小值為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

題文已知函數(shù).
(1)求函數(shù)的單調遞減區(qū)間;
(2)若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案