【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)C的普通方程和的直角坐標(biāo)方程;

(2)C上的點(diǎn)到距離的最大值.

【答案】(1)C的普通方程為的直角坐標(biāo)方程為(2)3

【解析】

1)把曲線C的參數(shù)方程平方相加可得普通方程,把xρcosθ,yρsinθ代入ρcosθρsinθ+40,可得直線l的直角坐標(biāo)方程;

2)設(shè)出橢圓上動(dòng)點(diǎn)的坐標(biāo)(參數(shù)形式),再由點(diǎn)到直線的距離公式寫出距離,利用三角函數(shù)求最值.

1)由t為參數(shù)),因?yàn)?/span>,且

所以C的普通方程為

ρcosθρsinθ+40,得xy+40

即直線l的直角坐標(biāo)方程為得xy+40

2)由(1)可設(shè)C的參數(shù)方程為(為參數(shù),)

P到直線得xy+40的距離為:

C上的點(diǎn)到的距離為

當(dāng)時(shí),取得最大值6,故C上的點(diǎn)到距離的最大值為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)在精準(zhǔn)扶貧行動(dòng)中,決定幫助一貧困山區(qū)將水果運(yùn)出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車每天費(fèi)用320元,乙型車每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖囌,則通過合理調(diào)配車輛,運(yùn)送這批水果的費(fèi)用最少為(

A.2400B.2560C.2816D.4576

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點(diǎn)

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將數(shù)列的前項(xiàng)分成兩部分,且兩部分的項(xiàng)數(shù)分別是,若兩部分和相等,則稱數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割.

1)若,試寫出數(shù)列的前項(xiàng)和所有等和分割;

2)求證:等差數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割;

3)若數(shù)列的通項(xiàng)公式為:,且數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割,求所有滿足條件的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)

(1)若,求出函數(shù)在區(qū)間上的最大值.

(2)若,求出函數(shù)的單調(diào)區(qū)間(不必證明)

(3)若存在,使得關(guān)于方程有三個(gè)不相等的實(shí)數(shù)根,求出實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)C的普通方程和的直角坐標(biāo)方程;

(2)C上的點(diǎn)到距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,,求的值域;

2)當(dāng)時(shí),求的最小值;

3)是否存在實(shí)數(shù),同時(shí)滿足下列條件:① ;② 當(dāng)的定義域?yàn)?/span>時(shí),其值域?yàn)?/span>.若存在,求出、的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列六個(gè)命題:

1)若,則函數(shù)的圖像關(guān)于直線對稱.

2的圖像關(guān)于直線對稱.

3的反函數(shù)與是相同的函數(shù).

4無最大值也無最小值.

5的最小正周期為.

6有對稱軸兩條,對稱中心有三個(gè).

則正確命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域.

(2)對于任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案