在計(jì)算“1×2+2×3+...+n(n+1)”時(shí),某同學(xué)學(xué)到了如下一種方法:
先改寫第k項(xiàng):k(k+1)=
由此得1×2-.
.
.............
.
相加,得1×2+2×3+...+n(n+1).
類比上述方法,請你計(jì)算“1×2×3×4+2×3×4×+....+”,
其結(jié)果是_________________.(結(jié)果寫出關(guān)于的一次因式的積的形式)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)等差數(shù)列滿足公差,,且數(shù)列中任意兩項(xiàng)之和也是該數(shù)列的一項(xiàng).若,則的所有可能取值之和為_________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
請閱讀下列材料:若兩個(gè)正實(shí)數(shù)a1,a2滿足,那么.
證明:構(gòu)造函數(shù),因?yàn)閷σ磺袑?shí)數(shù)x,恒有,所以 ,從而得,所以.
根據(jù)上述證明方法,若n個(gè)正實(shí)數(shù)滿足時(shí),你能得到的結(jié)論為 .(不必證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
用數(shù)學(xué)歸納法證明“當(dāng)n為正偶數(shù)時(shí)xn-yn能被x+y整除”第一步應(yīng)驗(yàn)證n=________時(shí),命題成立;第二步歸納假設(shè)成立應(yīng)寫成____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知數(shù)列{an}滿足a1=2,an+1= (n∈N*),則a3=________,a1·a2·a3·…·a2014=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知=2,=3,=4,…,若=7,(a,t均為正實(shí)數(shù)),則類比以上等式,可推測a、t的值,a+t= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com