【題目】已知為坐標(biāo)原點(diǎn),橢圓的左、右焦點(diǎn)分別為,.過(guò)焦點(diǎn)且垂直于軸的直線(xiàn)與橢圓相交所得的弦長(zhǎng)為3,直線(xiàn)與橢圓相切.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在直線(xiàn)與橢圓相交于兩點(diǎn),使得?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由!

【答案】(1)(2)見(jiàn)解析

【解析】

(1)由題意列出關(guān)于a,b的關(guān)系式,解得a,b即可.

(2)將直線(xiàn)與橢圓聯(lián)立,將向量數(shù)量積的運(yùn)算用坐標(biāo)形式表示,利用根與系數(shù)之間的關(guān)系確定k的取值范圍.

(1)在中,令,得,解得.

由垂徑長(zhǎng)(即過(guò)焦點(diǎn)且垂直于實(shí)軸的直線(xiàn)與橢圓相交所得的弦長(zhǎng))為3,

所以.①

因?yàn)橹本(xiàn)與橢圓相切,則.②

將②代入①,得.

故橢圓的標(biāo)準(zhǔn)方程為.

(2)設(shè)點(diǎn),.

由(1)知,則直線(xiàn)的方程為.

聯(lián)立,

恒成立.

所以,

.

因?yàn)?/span>,

所以.即.

,得,

,

解得;

∴直線(xiàn)存在,且的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為2切直線(xiàn)MN于點(diǎn)P,射線(xiàn)PKPN出發(fā)繞點(diǎn)P逆時(shí)針?lè)较蛐D(zhuǎn)到PM,旋轉(zhuǎn)過(guò)程中,PK于點(diǎn)Q,設(shè)x,弓形PmQ的面積為,那么的圖象大致是  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知數(shù)列,首項(xiàng),設(shè)該數(shù)列的前項(xiàng)的和為,且

1)求數(shù)列的通項(xiàng)公式;

2)若數(shù)列滿(mǎn)足,求數(shù)列的通項(xiàng)公式;

3)在第(2)小題的條件下,令是數(shù)列的前項(xiàng)和,若對(duì),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在上海高考改革方案中,要求每位高中生必須在物理、化學(xué)、生物、政治、歷史、地理6門(mén)學(xué)科(3門(mén)理科,3門(mén)文科)中選擇3門(mén)學(xué)科參加等級(jí)考試,小李同學(xué)受理想中的大學(xué)專(zhuān)業(yè)所限,決定至少選擇一門(mén)理科學(xué)科,那么小李同學(xué)的選科方案有________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】個(gè)不同的紅球和個(gè)不同的白球,放入同一個(gè)袋中,現(xiàn)從中取出個(gè)球.

1)若取出的紅球的個(gè)數(shù)不少于白球的個(gè)數(shù),則有多少種不同的取法;

2)取出一個(gè)紅球記分,取出一個(gè)白球記分,若取出個(gè)球的總分不少于分,則有多少種不同的取法;

3)若將取出的個(gè)球放入一箱子中,記“從箱子中任意取出個(gè)球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個(gè)紅球并且恰有一次取到個(gè)白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知非零復(fù)數(shù);若,,滿(mǎn)足,.

1)求的值;

2)若所對(duì)應(yīng)點(diǎn)在圓,求所對(duì)應(yīng)的點(diǎn)的軌跡;

3)是否存在這樣的直線(xiàn),對(duì)應(yīng)點(diǎn)在上,對(duì)應(yīng)點(diǎn)也在直線(xiàn)上?若存在,求出所有這些直線(xiàn);若不存在,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問(wèn)各出幾何?此問(wèn)題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說(shuō):“我羊所吃的禾苗只有馬的一半.”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生參加社會(huì)實(shí)踐活動(dòng),對(duì)某公司1月份至6月份銷(xiāo)售某種配件的銷(xiāo)售量及銷(xiāo)售單價(jià)進(jìn)行了調(diào)查,銷(xiāo)售單價(jià)x和銷(xiāo)售量y之間的一組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

銷(xiāo)售單價(jià)(元)

9

9.5

10

10.5

11

8

銷(xiāo)售量(件)

11

10

8

6

5

14.2

(1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線(xiàn)方程;

(2)若由回歸直線(xiàn)方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線(xiàn)方程是理想的,試問(wèn)(1)中所得到的回歸直線(xiàn)方程是否理想?

(3)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)售量與銷(xiāo)售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷(xiāo)售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷(xiāo)售收入-成本).

參考公式:回歸直線(xiàn)方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面上有個(gè)點(diǎn),將每一個(gè)點(diǎn)染上紅色或藍(lán)色.從這個(gè)點(diǎn)中,任取個(gè)點(diǎn),記個(gè)點(diǎn)顏色相同的所有不同取法總數(shù)為.

(1)若,求的最小值;

(2)若,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案