【題目】在①;②,這兩個條件中任選一個,補充在下面問題中,然后解答補充完整的題目.

中,內(nèi)角的對邊分別為,設的面積為,已知 .

1)求的值;

2)若,求的值.

注:如果選擇多個條件分別解答,按第一個解答計分.

【答案】1)見解析(2

【解析】

1)如果選擇條件①,用余弦定理和三角形面積公式化簡即得的值;如果選擇條件②,利用正弦定理化簡得,再求的值;(2)如果選擇條件①,先求出,代入即得解;如果選擇條件②,求出,再利用余弦定理即得解.

1)選擇條件①:

由題意得.

整理可得,

.所以,所以.

選擇條件②:

因為,

由正弦定理得

,

中,,所以

,所以

2)如果選擇①,由,得,又

,解得.

代入中,

解得.

如果條件②:,解得,又a=10,

所以,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】由于濃酸泄漏對河流形成了污染,現(xiàn)決定向河中投入固體堿,1個單位的固體堿在水中逐步溶化,水中的堿濃度與時間的關系,可近似地表示為,只有當河流中堿的濃度不低于1時,才能對污染產(chǎn)生有效的抑制作用.

1)如果只投放1個單位的固體堿,則能夠維持有效抑制作用的時間有多長?

2)當河中的堿濃度開始下降時,即刻第二次投放1個單位的固體堿,此后,每一時刻河中的堿濃度認為是各次投放的堿在該時刻相應的堿濃度的和,求河中堿濃度可能取得的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次考試后,對全班同學的數(shù)學成績進行整理,得到表:

分數(shù)段

人數(shù)

5

15

20

10

將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)在點處的切線平行于直線,求切點的坐標及此切線方程;

2)求證:當時,;(其中

3)確定非負實數(shù)的取值范圍,使得,成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)對,不等式都成立,求整數(shù)k的最大值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市新上一種瓶裝洗發(fā)液,為了打響知名度,舉行為期六天的低價促銷活動,隨著活動的有效開展,第六天該超市對前五天中銷售的洗發(fā)液進行統(tǒng)計,y表示第x天銷售洗發(fā)液的瓶數(shù),得到統(tǒng)計表格如下:

x

1

2

3

4

5

y

4

6

10

15

20

1)若yx具有線性相關關系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程,并預測第六天銷售該洗發(fā)液的瓶數(shù)(按四舍五入取到整數(shù));

2)超市打算第六天加大活動力度,購買洗發(fā)液可參加抽獎,中獎者可領取獎金20元,中獎概率為,已知甲、乙兩名顧客抽獎中獎與否相互獨立,求甲、乙所獲得獎金之和X的分布列及數(shù)學期望.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的四個頂點在球的球面上,是邊長為正三角形,分別是的中點,,則球的體積為_________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分13分如圖,在直角坐標系,的頂點是原點始邊與軸正半軸重合終邊交單位圓于點,,將角的終邊按逆時針方向旋轉,交單位圓于點

1,;

2分別過軸的垂線垂足依次為,的面積為的面積為,,求角的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)且 )曲線的參數(shù)方程為為參數(shù),且),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為: ,曲線的極坐標方程為.

(1)求的交點到極點的距離;

(2)設交于點,交于點,當上變化時,求的最大值.

查看答案和解析>>

同步練習冊答案