已知橢圓
的中心是坐標原點,焦點在坐標軸上,且橢圓過點
三點.
(1)求橢圓
的方程;
(2)若點
為橢圓
上不同于
的任意一點,
,求
內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的右焦點為
,右準線為
,點
,線段
交
于點
,若
,則
=( 。
a.
b. 2 C.
D. 3
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,橢圓C:
焦點在
軸上,左、右頂點分別為A
1、A,上頂點為B.拋物線C
1、C:分別以A、B為焦點,其頂點均為坐標原點O,C
1與C
2相交于直線
上一點P.
⑴求橢圓C及拋物線C
1、C
2的方程;
⑵若動直線
與直線OP垂直,且與橢圓C交于不同兩點M、N,已知點Q(
,0),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
的焦點恰好是橢圓
的右焦點
,且兩條曲線的交點連線也過焦點
,則橢圓的離心率為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是橢圓
的兩個焦點,
是橢圓上的點,且
.
(1)求
的周長;
(2)求點
的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
橢圓
的離心率
,過右焦點
的直線
與橢圓
相交
于
A、
B兩點,當直線
的斜率為1時,坐標原點
到直線
的距離為
⑴求橢圓
C的方程;
⑵橢圓
C上是否存在點
,使得當直線
繞點
轉(zhuǎn)到某一位置時,有
成
立?若存在,求出所有滿足條件的點
的坐標及對應的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的左、右焦點分別為
、
,直線
過
與橢圓相交于
、
兩點,
為坐標原點,以
為直徑的圓恰好過
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分
)
已知定點
,B是圓
(C為圓心)上的動點,AB的垂直平分線與BC交于點E。
(1)求動點E的軌跡方程;
(2)設直線
與E的軌跡交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:
OPQ面積的最大值及此時直線
的方程。
查看答案和解析>>